Abstract
Layered double hydroxides (hydrotalcites) with Zn/Al, Zn/Al-La and Zn-Mg/Al were synthesized by the coprecipitation method with microwave and ultrasonic hydrothermal aging and nitrate as the interlayer anion; those materials have been used as precursors for the preparation of mixed metal oxides by calcination at 500 °C. The formation of ZnO was detected in the mixed oxides, indicating the destruction of lamellar structure with different degree of crystallinity depending of the hydrothermal method used. All the mixed oxides were tested for the study of degradation of diclofenac (DCF) and TiO$_2$ as reference. The photocatalysis were investigated in term of UV absorbance for an initial DCF concentration (50 mgL$^{-1}$) in a batch reactor system. All the samples resulted active as heterogenous photocatalysts. These results showed that mixed oxides prepared are promising materials for an effective diclofenac degradation.

Keywords: hydrotalcites Zn/Al-La, photocatalysis, diclofenac, LDH, degradation.

1 Introduction

Diclofenac sodium salt (DCF), sodium 2-[(2, 6-dichlorophenyl) aminol-phenyl] acetate, is a synthetic nonsteroidal anti-inflammatory agent (NSAID) with antipyretic and analgesic action, a drug one of the most frequently detected pharmaceuticals in waters and urban wastewater (Andreozzi et al., 2003) Recent studies show that advanced oxidation processes (AOPs) can be successfully applied for the removal of pharmaceuticals from water (Klavarioti et al., 2009). One of the most popular photocatalysis for AOPs is the TiO$_2$ because of its capacity to mineralize organic pollutant, to operate without pH adjustment (Rizzo et al., 2009). Some authors reported that the toxicity of the degradation products increased during the oxidation but at the end of the irradiation tie no toxicity was observed. The oxidation processes could be hydrolysis, dehydration, adduct formation, dimerization, rearrangement, excipient reaction and often from the combination of these processes...
For the AOP photocatalytic semiconductor materials are widely used to degrade organic contaminants in water. The photocatalytic process, describe a process in which light is used to activate a catalyst or one substance that modifies the rate of a chemical reaction without being involved itself in the chemical transformation. The most commonly solids used for AOP processes are TiO$_2$ and ZnO photocatalysts (Rizzo et al., 2009; Tzompantzin et al., 2014; Mahjoubi et al., 2017; Valente et al., 2009; Patzkó et al., 2005; Seftel et al., 2008; Zhang et al., 2016; Zhao et al., 2010). The photocatalytic properties of the ZnO was reported by Patzko et al. (2005), they reported ZnAl-layered double hydroxides with various Zn/Al ratios by sol-gel method and the samples were calcinated and studied with aqueous phenol solution. Tzompantzi et al. (2014) reported ZnAlLa LDH and their mixed oxides evaluated in the photoactivity in the degradation of phenol using a low intensity UV-Vis showed values in phenol mineralization 88% with the ZnAlLa samples.

The Zn-Al LDHs have many other applications, Mahjoubi et al. (2017) synthesized Zn-Al layered double hydroxides intercalated with different interlaminar ions via coprecipitation method at a constant solution pH for methyl orange adsorption.

There are some catalysts used for elimination of phenolic compounds such as Valente et al. (2009) prepared five samples of Mg-Zn-Al LDHs by coprecipitation method and the mixed oxides were tested for the photocatalytic degradation of 2,4-D and phenol with nearly 70% of initial 0.42 mmol/L was degraded after 6 h.

LDHs are materials that are simple and economical to synthesize in the laboratory, as reference material TiO$_2$ was used for the degradation of DCF, Calza et al. (2006) and many others authors have been described that the oxidation of DCF takes place by either indirect oxidation by surface bound hydroxyl radicals or directly via the valence band hole.

Some LDHs have been reported recently reported as a good alternative for the photodegradation of organic compounds methyl-orange (Seftel et al., 2008), orange II sodium salt (Zhang et al., 2016), methylene-blue (Parida et al., 2007), methyl-violet (Parida et al., 2012), malachite-green (Parida et al., 2012), acridine orange, Congo red and methyl orange (Khan et al. 2016) in aqueous media.

Because hydrotalcite-type compounds are very rare in nature, it is necessary to synthesize them. However, these materials are promising for their ease of synthesis in aqueous solutions from salts of the cations to be used, in addition to being able to store large number of anions in the interlaminar space, favoring a simple preparation of metal catalysts by means of a simple heat treatment (Cavani et al., 1991). The main disadvantage of this method is the time required to crystallize the hydrotalcite. New synthetic routes have been explored, for instance the sol-gel method (expensive reactants), many authors have been using microwave irradiation for the synthesis of inorganic solids (Bergadá et al., 2007). Climent et al. (2004) reported the synthesis of LDH of Mg-Al by different methods (conventional, microwave irradiation and ultrasounds) during the aging step (Chimentao et al., 2007). The crystallinity of the precipitated hydrotalcite is a property that can be increased further by the hydrothermal treatment (Montanari et al., 2010). An effective method is that of microwave irradiation which reduces the time and temperature of crystallization. However, control of synthesis depends on parameters such as molar ratio or the power of the irradiation with microwaves as described in established in a previous work of Rivera et al. (2006). Bang and Suslick (2010) between many authors reported the recent advances in nanostructured materials when they reconsidered the utilization of high intensity ultrasound; the primary physical phenomena associated with ultrasound that are relevant to materials synthesis are acoustic cavitation (implosive collapse of bubbles in a liquid) and nebulization (impinging on a liquid-gas interface) serves as the origin of most sonochemical phenomena in liquids or liquids-solid slurrries (Bang et al., 2010) and etoxide-acetylacetonate (Paredes et al., 2015).

The objective of the present study was to investigate the degradation of DCF by the oxide mixtures of hydrotalcites (Zn/Al, Zn/Al-La, Zn-Mg/Al) and the TiO$_2$ photocatalysis process in DCF concentration (50 mg L$^{-1}$) in a batch reactor system. The degradation rate was evaluated in term of UV absorbance. The effect of incorporation of lanthum to hydrotalcites in the photocatalytic behavior during the degradation of DCF was studied and discussed.

2 Experimental section

2.1 Materials and reagents

Aluminum nitrate nonahydrate [Al(NO$_3$)$_3$·9H$_2$O, 98% Sigma Aldrich], zinc nitrate nonahydrate [Zn(NO$_3$)$_2$·9H$_2$O, 98% Sigma Aldrich], magnesium...
nitrates hexahydrate [Mg(NO$_3$)$_2$·6H$_2$O, 98% Sigma Aldrich], sodium hydroxide [NaOH, analytical grade, Sigma-Aldrich], lanthanum nitrates hexahydrate [La(NO$_3$)$_3$·6H$_2$O, 98% Sigma Aldrich] were used to prepare layered double hydroxides. Diclofenac sodium salt, CAS No. 15307-76-6, [C$_{14}$H$_{10}$Cl$_2$NO$_2$Na 99.5% puriss, Sigma Aldrich] was used as obtained in the photocatalytic experiments. Titanium (IV) oxide, anatase powder, 99.8% (TiO$_2$) was used as a catalyst (Valente et al., 2009; Zhang et al., 2016).

2.2 Preparation of layered double hydroxides

The salts of the nitrated compounds were dissolved in distilled water with metallic molar ratio [M$^{2+}$/M$^{3+}$ + M$^{2+}$] of x = 0.25, the mix was called A solution. Sodium hydroxide was dissolved in distilled water using 1.86 N, it was called B solution. A solution was added drop wise to B solution under vigorous stirring, the pH was adjusted to 9.0 under N$_2$ atmosphere. The obtained gel was treated with microwave and ultrasound irradiation. In the case of materials prepared by microwave irradiation, the products were treated hydrothermally in a conventional microwave oven operating at 120 W and 2450 MHz, at a temperature of 80 °C and at atmosphere pressure. In case of ultrasound irradiation, the products were irradiated in an Elma D-78224 cleaner container operating at 2.4 kW and 25 kHz in normal mode. In both methods the irradiation time was 10 minutes to improve their crystallinities. During 4 days ageing the precipitates were filtered and then were washed once with hot distilled water (70°C) to eliminate the alkali metals and nitrate ions until the pH 7, the products were dried at 70 °C for 12 h. These samples were labeled according to Table 2.

Table 1. Physicochemical characteristics of diclofenac sodium

<table>
<thead>
<tr>
<th>Name</th>
<th>Molecular structure</th>
<th>Solubility in water (g/L)*</th>
<th>pKa</th>
<th>Mw (g/mol)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac sodium</td>
<td></td>
<td>2.425</td>
<td>4</td>
<td>318.14</td>
<td>277</td>
</tr>
</tbody>
</table>

* at 25 °C

Table 2. Identification of samples.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Metallic molar x=0.25</th>
<th>Irradiation time (10 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ</td>
<td>Zn/Al</td>
<td>Microwave</td>
</tr>
<tr>
<td>UZ</td>
<td>Zn/Al</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>MZL3</td>
<td>Zn/(Al-3%La)</td>
<td>Microwave</td>
</tr>
<tr>
<td>UZL3</td>
<td>Zn/(Al-3%La)</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>MZL5</td>
<td>Zn/(Al-5%La)</td>
<td>Microwave</td>
</tr>
<tr>
<td>UZL5</td>
<td>Zn/(Al-5%La)</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>MMZ</td>
<td>Zn-Mg/Al</td>
<td>Microwave</td>
</tr>
<tr>
<td>UMZ</td>
<td>Zn-Mg/Al</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

The hydrotalcites were calcined at 500 °C for 4 h in an air flow, in order to obtain mixed oxide base catalyst (Valente et al., 2009; Zhang et al., 2016).

2.3 Characterization of LDH and mixed oxides

The powder X-ray diffraction (XRD) patterns were recorded from 2θ = 5 – 70 using Rigaku Miniflex 600 diffractometer using Cu-Kα radiation operation at 40kV and 15 mA. Specific surface areas of the different mixed oxides were obtained with a Nova 4200e Surface Area & Pore Size Analyzer Instruments using the BET methodology, the pore size distribution was evaluated from the desorption isotherms using the BJH method; the samples were pretreated at 150 °C prior to N$_2$ adsorption during 8 h. UV-Vis absorption spectra for the different calcined samples were obtained with a Cary-100 Varian spectrophotometer equipped with an integration sphere. A field emission scanning electron microscope (JSM-7800F) equipped with a microanalysis system by disperse energy was used to obtain SEM images and with EDS detector (Morales 2017).

2.4 Catalytic activity

Photocatalytic experiments were carried out at room temperature. A 100 mL vessel was filled in with 50 mL
DCF solutions (50 mg L\(^{-1}\)) and the 50 mg of catalyst at natural pH. UV absorbance analysis were found to be useful for a fast and easy to perform measurement to get preliminary information about the degradation formed during oxidation (Czech \textit{et al.}, 2013). The suspension was mixed for 5 minutes before to start the experiment. The vessel was placed in a photo-reactor illuminated from the 20 W black light fluorescent spiral lamp (127 V) emitting radiation between 365 and 465 nm under continuous magnetic stirring during 6 hours. The same procedure of was carried out following the same procedure of photocatalysis test but with the lamp switched off (blank test, photolysis).

2.5 Diclofenac degradation

Changes in the concentration of DCF were monitored by taking samples, using a syringe filter, and analyzing those aliquots using a UV-vis spectrophotometer (model precisely Lambda XLS+Spectrometer, Perkin Elmer). The solution was scanned in the 200-400 nm UV region. The absorbance was measured at the wavelength that correspond to the maximum DCF absorbance in the visible region (277 nm, UV\(_{277}\)) and this wavelength was adopted for the absorbance measurement (Czech \textit{et al.}, 2013). A calibration curve (which it was previously obtained) was utilized to determine the concentration of DCF in each aliquot (Morales, 2017).

2.5.1 Structural elucidation

The spectra were obtained using a micrOTOF-QII mass spectrometer Bruker Daltonics equipped with an electrospray ionization source (ESI). The parameters were set as follows: set capillary 2700 V, nebulizer pressure 0.4 Bar, dry gas flow 4 L/min, dry gas temperature 180 °C. The sample was run in the negative ion polarity mode. The scan range was from 50 to 3000 m/z.

2.6 \(\bullet\)OH radical determination

Fluorescence spectra of 2-hydroxyterephthalic acid were measured on Spectrofluorophotometer Shimadzu RF-5301PC. The \(\bullet\)OH radical generated by the material semiconductor in absence of the diclofenac was evaluated by using terephthalic acid (T.A.) was dissolved in a water /NaOH solution (Mendoza-Damian \textit{et al.}, 2016). Then 200 mg of photocatalyst was added and the suspension was stirred for 5 min under dark condition. After it was irradiated by black light fluorescent spiral lamp (20 W, 127 V) during 6 hours, and aliquots were taken at different time. Spectrofluorophotometer excited at 315 nm analyzed the fluorescence emission spectra of the irradiated solution.

3 Results and discussions

3.1 Characterization of materials

The XRD patterns of the samples, shown in Fig 1, exhibit the characteristic reflections of layered double hydroxides (003), (006), (012), (009), (018), (110) and (113) in all the samples, the diffraction peaks matched by the JCPDS card No. 38-0486. For the sample MZ, MZL3 and MZL5 is possible to note two diffractions for the peaks corresponding at 2\(\theta\) = 10.4 and 11.4\(^\circ\) for diffraction (003) and 2\(\theta\) = 20.1 and 23\(^\circ\) for diffraction (006), it could be a mixture for LDH with nitrate and carbonated, because the synthesis was made in atmospheric air (Cavani \textit{et al.} 1991). This double signal was presented only in the samples synthesized with microwave treatment. The crystal size could be calculated from the index Miller (003) and (110), using the Debye-Sherrer equation. Also, as in Figure 3 shows the sample MZ presents additional reflections associated to the ZnO such as characteristic reflections (100), (002) and (101), that are characteristics for LDH with molar metal ratio less than 0.3 (Ramírez \textit{et al.}, 2017). For the sample MZ the most intensive peak can be observed at 2\(\theta\) = 11.4, 23, 34.5, 39.3, 46.6, 60.2 and 61.5\(^\circ\), which represents the characteristics peaks of hydrotalcite materials (Tzompantzi \textit{et al.}, 2014; Cavani \textit{et al.}, 1991). In the samples MZ and MMZ was possible to observer a characteristic reflection of nitratine (NaNO\(_3\)) at 2\(\theta\) = 29.4, it was mark with an asterisk (*). The samples synthesized with ultrasonic treatment presents the characteristic reflections for layered double hydroxides but less defined reflections, that it could be less crystalline materials than the LDH synthesized with microwaves treatment. The others LDH samples with cations with Zn/Al-La and with Mg-Zn/Al presents the typical reflections of hydrotalcites forming a ternary LDH material.
Figure 1. XRD patterns of MZ(a), UZ (b), MZL3(c), UZL3(d), MZL5(e), UZL5(f), MMZ(g) and UMZ(h).

Figure 2. XRD patterns of calcinated samples cMZ(a), cUZ(b), cMZL3(c), cUZL3(d), cMZL5(e), cUZL5(f), cMMZ(g) and cUMZ(h) at 500 °C.

Figure 3. XRD patterns of LDH MZ(a), cMZ LDH calcined at 500 °C (b), Zn-Al-LDH JCPDS card no. 38-0486 (c).

Figure 4 show the typical nitrogen adsorption-desorption isotherms and their corresponding pore size distribution of the adsorbents. All samples exhibited a type IV isotherm are its hysteresis loop according to the IUPAC classification (Sing et al., 1985) with a H3-type hysteresis loop for the samples cMZ and cMZL5 (treatment with microwaves), which is caused to the presence of slit pores that are coming from the plate like particles giving rise to slit shaped pores. On the other hand, the isotherm of cUZ and cUZL5 showed a H1-type hysteresis loop, where the two branches are almost vertical, which was attributed to capillary condensation and more defined cylindrical pore channels. The adsorption isotherms of the samples showed the monolayer-multilayer adsorption that takes place between the aggregates of platelets particles and the capillary condensation authors for similar samples (Patzkó et al., 2005). Seftel et al. (2008) reported that calcination at 500°C the Al could be present as AlO(OH) or the Al^{3+} cations could be dispersed in a mostly amorphous phase (Seftel et al., 2008; Zhao et al., 2010).

The treatment at 500 °C is not sufficient for the formation of aluminum oxide crystals (Patzkó et al., 2005). In the diffraction spectrum of the calcined samples (Fig. 2) all the samples using microwaves hydrotreatment show very high intense lines that described the presence of a crystalline ZnO phase than the samples using ultrasound treatment. In all the samples the use of ultrasound treatment affects the crystallinity and the crystal size of the calcined samples.
Figure 4. Nitrogen sorption isotherms at 77 K of mixed oxides. (a) Adsorption isotherms of mixed oxides samples. Closed symbols: adsorption branch, open symbols: desorption branch. (b) BJH Pore size distribution of the samples.

Fig. 4. Nitrogen sorption isotherms at 77 K of mixed oxides. (a) Adsorption isotherms of mixed oxides samples. Closed symbols: adsorption branch, open symbols: desorption branch. (b) BJH Pore size distribution of the samples.

Fig. 5. Diffuse reflectance spectra of samples: cMZ (a), cUZ (b), cMZL3 (c), cUMZL3 (d), cMZL5 (e), cUZL5 (f), cMMZ (g) and cUMZ (h).

Based on the observed specific surface areas are independent of the irradiation method. In general, the average pore diameter of the samples synthesized with ultrasound is greater than that obtained with the samples synthesized with microwaves. Paredes et al. (2015) considered that the crystallinity, the interlayer distance and specific surface area are dependent on the compensation anion more than the irradiation technique. The results for all the samples showed at the pore size distribution of the diameter BJH and the average pore diameter that the mixed oxides samples were included in the category of mesoporous materials. Figure 5 presents UV-vis diffuse reflectance spectrum of calcined samples and TiO$_2$. A wide absorption ranged from 350 to 460 nm was observed for all the samples.
Table 3. Textural properties and band gap values of calcined samples.

<table>
<thead>
<tr>
<th>Tag</th>
<th>BET (m²/g)</th>
<th>Pore diameter (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>Average pore diameter (nm)</th>
<th>Band gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cMZ</td>
<td>49</td>
<td>3.56</td>
<td>0.077</td>
<td>6.84</td>
<td>2.76</td>
</tr>
<tr>
<td>cUZ</td>
<td>30</td>
<td>3.61</td>
<td>0.064</td>
<td>9.15</td>
<td>2.29</td>
</tr>
<tr>
<td>cMZL3</td>
<td>35</td>
<td>3.53</td>
<td>0.075</td>
<td>7.01</td>
<td>2.84</td>
</tr>
<tr>
<td>cUZL3</td>
<td>34</td>
<td>3.55</td>
<td>0.076</td>
<td>6.93</td>
<td>2.96</td>
</tr>
<tr>
<td>cMZL5</td>
<td>26</td>
<td>3.53</td>
<td>0.078</td>
<td>11.59</td>
<td>2.69</td>
</tr>
<tr>
<td>cUZL5</td>
<td>41</td>
<td>3.57</td>
<td>0.144</td>
<td>13.56</td>
<td>2.37</td>
</tr>
<tr>
<td>cMMZ</td>
<td>14</td>
<td>3.59</td>
<td>0.047</td>
<td>12.87</td>
<td>2.79</td>
</tr>
<tr>
<td>cUMZ</td>
<td>20</td>
<td>3.86</td>
<td>0.073</td>
<td>13.48</td>
<td>2.87</td>
</tr>
<tr>
<td>TiO₂</td>
<td>7</td>
<td>3.83</td>
<td>0.008</td>
<td>5.37</td>
<td>3.08</td>
</tr>
</tbody>
</table>

Fig. 6. SEM micrographs for (a) UZL5 (b) cUZL5.

In Table 3 the band gaps energy (Eg, eV) of the powders of mixed oxides were reported between 2.29 and 2.96 eV, this material was recorded at lower energies and for the TiO₂ was 3.08 eV. In Figure 5 show a shift in visible region for some samples (cUZL5 and cUZ) it could open the possibility of using this new material under irradiation with sunlight.

From SEM observations (see Fig. 6), it shows the hydrotalcite samples as aggregates with morphologies like platelet particles for (a) micrograph of UZL5 sample with 5% of La, the calcination at 500°C produced the collapse of this morphology and large particles rounded edges are observed. Figure 7 shows the elemental mapping images displayed the uniform and homogeneous distribution of O, Zn, Al and La; the metallic relation calculated was x=0.249 and the weight percent of La was 6.06. The mission of these impurities (wt.% of La) in introducing in LDH allowed states within the forbidden band of energy that enable the radiative transitions and therefore a more promising photocatalytic activity.

3.2 Catalytic activity

Several photocatalytic experiments using mixed oxides (calcined LDH) were carried out for the degradation of diclofenac sodium under ultraviolet light. Figure 8 reports the values of C/Co vs. irradiation time for evaluations of photocatalysis in the presence of calcined Zn/Al, Zn-Mg/Al and Zn/Al-La (for 3 and 5 %). The TiO₂ and photolysis (UV) were compared for 50 mgL⁻¹ initial DCF concentration (Co).
All the mixed oxides evaluated showed a degradation response of diclofenac to a greater or lesser extent. This experiment was repeated three times to ensure consistency of results. The results of one of these three experimental runs are depicted in Figure 8.

First, the results of the photolysis are presented, which indicates that there was no effect by the action of the single ultraviolet light on the study drug. The samples with lower performance were the mixed oxides with Mg/Zn/Al. The samples with mixed oxides with Zn/Al in general were those that presented better degradation results of diclofenac. The samples with the highest surface area (49 and 41 m²/g) were the two samples that presented the highest performance in the degradation reaching C/Co ratios of 83 and 88% at 180 minutes, being the samples of cMZ and cUZL5, respectively. Experimental results of TiO₂ photocatalytic oxidation of DCF showed the Langmuir-Hinshelwood (L-H) kinetic model (Calza et al., 2006). The disappearance of DCF as well as the mineralization rate depends on several factors including the initial concentration of the target compound, the photocatalyst loading and the irradiation time.
Consider the simplest case, DCF decomposing by two or more competing paths, Eq. (1), all elementary reactions (Rizzo et al., 2009).

\[
\begin{align*}
A & \xrightarrow{k_1} R \\
A & \xrightarrow{k_2} S \\
A & \xrightarrow{k_3} P
\end{align*}
\]
(1)

The rates of change of the all components are given by Eq. (2):

\[-r_A = -\frac{dC_A}{dt} = k_1 C_A + k_2 C_A + k_3 C_A = (k_1 + k_2 + k_3)C_A\]

(2)

It would be considered irreversible reactions in parallel, as multiple reactions. First of all, Eq. (2), which is of simple first order, is integrated to give Eq. (3).

\[-\ln \frac{C_A}{C_{Ao}} = (k_1 + k_2 + k_3)t\]

(3)

When plotted as in Figure 9 inset, the slope is \(k_1 + k_2 + k_3 = K_{app}\) (Levenspiel, 1999). The DFC degradation were fitted to pseudo-first order kinetics (with the obtained linearly dependent coefficients all around 0.95) (Figure 9), in which the value of rate constant (\(K_{app}\)) is equal to the corresponding slope of the fitting line. The \(K_{app}\) of cUZL5 was 0.0094 min\(^{-1}\), which was higher than cMZ and TiO\(_2\). In Figure 9 the behavior of the samples cUZL5 and cMZ are similar because both of them are mixed oxides from layer double hydroxides, but the little difference is their composition. These results implied that the interaction of La and ZnO took an important role in the enhancement of photoactivity.

3.3 Formation of \(^{•}\)OH radical

To explore the mechanism of diclofenac photocatalytic behavior, the formation of active hydroxyl radicals (\(^{•}\)OH) upon irradiation were monitored; it was considered the most important oxidative intermediate in photocatalytic reactions. There was studied the cMZ and the cULZ5 samples, both presented the fluorescence signal associated to the formation of 2-hydroxy terephthalic acid generated by using the samples in absence of diclofenac, both samples presented an increment as time progress during the evaluation. As reference, in the Figure 10, it represents the behavior of the sample cMZ (Mendoza-Damián et al., 2016).

3.4 Structural elucidation

In the negative ion mode electrospray mass spectrum of the solution of diclofenac four deprotonated molecular [M-H]\(^{-}\) ions (m/z values, 310.0047, 294.0089, 250.0191 and 172.9578) were apparent. Table 4 shows the proposed structures for the deprotonated molecular ions [M-H]\(^{-}\), with m/z values. The major degradation products produced in the agitation state with UV irradiation of diclofenac in deionized water with the presence of \(^{•}\)OH radicals are presented in Figure 11.
Fig. 11. Analysis of diclofenac sodium ESI-MS spectrum obtained by fragmentation of the [M-H]− ion by direct injection of aqueous solution using mixed oxides of Zn/Al-La LDHs under UV light.

Table 4. Molecular ion, molecular formula and molecular structure of the main components of the diclofenac degradation.

<table>
<thead>
<tr>
<th>Molecular Ion, [M-H]−</th>
<th>Chemical formula</th>
<th>Structural Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.0047</td>
<td>C_{14}H_{11}Cl_{2}NO_{3}</td>
<td>![Structure]</td>
</tr>
<tr>
<td>294.0089</td>
<td>C_{14}H_{11}Cl_{2}NO_{2}</td>
<td>![Structure]</td>
</tr>
<tr>
<td>250.0191</td>
<td>C_{13}H_{11}Cl_{2}N</td>
<td>![Structure]</td>
</tr>
<tr>
<td>172.9578</td>
<td>C_{6}H_{5}Cl_{2}NO</td>
<td>![Structure]</td>
</tr>
<tr>
<td>172.9578</td>
<td>C_{6}H_{6}O_{6}</td>
<td>![Structure]</td>
</tr>
</tbody>
</table>
The characterization of the degradation products of diclofenac has been previously described (Yu et al., 2013), it was not found a total advanced oxidation process, not a total mineralization was reached in any case.

3.5 Mechanisms of reaction

When the samples of study (oxides mixtures of Zn, Al and some of them with La) at 25 °C were irradiated by UV light, the •OH radicals were at first poorly photogenerated giving a low photocatalytic activity and when the time continues it was increasing the photocatalytic activity. It is probable that the presence of La and the ZnO, generate a synergistic effect between them and as a consequence the more e⁻/h⁺ pair charge can be photogenerated allowing the formation of more •OH radicals reacting with the diclofenac compounds or with the intermediates products.

Conclusions

In the present study, the synthesis of layered double hydroxide of Zn/Al, Zn-Mg/Al, Zn/Al-La by microwave thermal and ultrasonic thermal treatment were reported. We confirm that the use of microwave during aging allows us to obtain LDH or hydrotalcites with high crystallinity and the use of ultrasonic treatment allows us to obtain LDH with low crystallinity at the same time of treatment. The Zn/Al, Zn-Mg/Al, Zn/Al-La mixed oxides after calcination of LDH are showed. The nitrogen adsorption-desorption isotherms and the pore size distribution graphics obtained for the mixed oxides show the mesoporosity characteristics. SEM techniques allow us to observe that sample of Zn/Al-La LDH was completely homogeneous. The results obtained in the application of these materials for the photocatalytic degradation of DCF, allow us to propose that, Zn/Al-La mixed oxides are promising materials for a very efficient degradation of diclofenac, reaching 88% at 180 minutes of partial degradation in comparison to the reference TiO₂, in which the DCF degradation was only 68% at the same time. Based on the behavior of the DCF degradation, the mixed oxides were more active mainly due to the textural properties produced by the synthesis method and the interaction of the Lanthanum in their composition. Product identification was consistent with hydroxylation mechanism, but there was not a total mineralization, it is possible to degraded products with higher irradiation dose.

Acknowledgment

The authors are grateful to IPN for the financial support (SIP-20161758 and SIP-20171120), special financial support (ICYTDF/207/2012) and Centro de Nano, Micro y Nanotecnología from IPN by technical support. The technical support of Dr.Elim Albiter and the facilities for the ESIQIE Postgraduate Catalysis Lab are widely acknowledged.

References

