A STUDY ON EMPIRICAL AND MECHANISTIC APPROACHES FOR MODELLING CANE SUGAR CRYSTALLIZATION

ESTUDIO DE ENFOQUES EMPÍRICOS Y MECANÍSTICOS PARA EL MODELADO DE LA CRISTALIZACIÓN DE AZÚCAR DE CAÑA

E. Bolaños-Reynoso1*, K. Sánchez-Sánchez1, L. López-Zamora1, L. Ricardez-Sandoval2

1División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Orizaba - TecNM. Oriente 9 Núm. 852 Colonia Emiliano Zapata, Orizaba, Veracruz 94320, México.

2Departament of Chemical Engineering, University of Waterloo, Waterloo, Ontario NL2 3G1, Canada.

Received September 3, 2017; Accepted December 28, 2017

Abstract

This study presents the kinetic modelling for cane sugar batch crystallization. The study is based on two approaches to describe the nucleation (homogeneous primary and secondary) and growth kinetics, and the birth and death rates of crystals: a) empirical models with equations of type power law (TPL) and b) mechanistic approach with thermodynamic equations. Both approaches, describing the phenomena of crystallization at the microscopic level (by solving population balance equation by method of lines), were validated using experimental data from a pilot-scale plant. From the results of both approaches and experimental validation, we conclude that the mechanistic approach best represents the dynamic behavior of cane sugar batch crystallization under different operational conditions than the empirical approach (TPL).

Keywords: crystallization, modelling, kinetics, mechanistic and empirical approaches.

Resumen

Este estudio presenta el modelado cinético para la cristalización por lotes de azúcar de caña. El estudio se basa en dos enfoques para describir las cinéticas de nucleación (primaria homogénea y secundaria), de crecimiento y las tasas de nacimiento y muerte de cristales: a) modelos empíricos con ecuaciones de tipo ley de potencias (TPL) y b) enfoque mecanístico con ecuaciones termodinámicas. Ambos enfoques describen los fenómenos de cristalización a nivel microscópico (con la solución del balance de población por método de líneas) y fueron validados usando datos experimentales provenientes de una planta escala piloto. De los resultados de ambos enfoques y la validación experimental, se concluye que el enfoque mecanístico representa mejor los comportamientos dinámicos de la cristalización por lotes de azúcar de caña bajo diferentes condiciones operativas con respecto al enfoque empírico (TPL).

Palabras clave: cristalización, modelado, enfoque mecanístico y empírico.

1 Introduction

Batch crystallization is a separation process where molecules transfers from a solute dissolved within a liquid or gas toward a solid phase in two steps: 1) nucleation and 2) crystal growth. Process performance is often described in terms of crystal properties at the end of the batch, e.g. crystal size distribution (CSD), which comprises the crystal average diameter (% volume D(4,3)) and the standard deviation (% volume S(4,3)), as well as the mass of crystals. Phenomena producing wide distributions in CSD such as secondary nucleation are undesirable since they generate a product with dispersed shape characteristics, resulting in unsatisfactory transport properties for downstream processing such as filtration and drying (Ouiazzane et al., 2008; Nagy et al., 2013).

The development of highly detailed mathematical models describing the nonlinear dynamic behavior of the crystallization process is critical to determine optimal operating conditions that produce high quality products, e.g. narrow CSD and specific shape (Gerstlauer et al., 2002, Motz et al., 2002). Largely, the quality of the model depends on the assumptions made during its development, the accuracy of the experimental data used for estimation of unknown kinetic parameters, and the numerical algorithm employed to solve the model equations (Motz et al., 2002; Mesbah et al., 2009). A commonly accepted
approach to describe suspensions within a crystallizer is the population balance equation (PBE), introduced by Randolph and Larson (1988). Its application generally leads to complex mathematical models involving discretization schemes of a large set of ordinary differential equations (Ramkrishna, 2000; Ma et al., 2002, Samad et al., 2013). Moreover, the crystallization modelling also requires a detailed mathematical description for the nucleation and crystal growth rates. Consequently, previous works have reported different approaches with successful applications for process improvement. Nagy et al., (2003) employed empirical models on the development of a control strategy that quantifies uncertainty on kinetic constants for nucleation and crystal growth for KNO₃. Bolaños et al., (2014) reported optimal agitation rate trajectories that maximized the average crystal diameter D(4,3) from empirical kinetic models under uncertainty for the cane sugar batch crystallization. Bensehard et al., (2015) studied the sensitivity of parameter estimation on empirical kinetic constants and evaluated how oversimplified model assumptions mislead the interpretation of experimental results.

While empirical models have limited predictive capabilities outside their operating range covered by the experimental data used for parameter estimation (Westhoff and Kramer, 2012), mechanistic models, i.e. models developed based on balance conservation principles, are developed based on the system physicochemical properties and geometric characteristics of the crystallization unit (i.e. thermodynamic equations). According to Bermingham et al., (2003), mechanistic models are required to describe crystallization processes in a wide range of operating conditions, where secondary nucleation plays a key role. Those models provide a complete description of the frequency collisions of the crystals due to agitation rate. Moreover, such modelling approach has less unknown parameters compared with the empirical models and can be obtained by a simple formulation of an optimization problem. Gerstlauer et al., (2002) presented the development of the mathematical model proposed by Gahn, C. & Mersmann, A., (1999a) for batch and continuous crystallization. In that model, a constant parameter related to the degree of primary nucleation heterogeneity is considered. Kalbasenka et al., (2011) made use of experimental data obtained from different batches to estimate the kinetic parameters and dismissed the assumption of invariability of the kinetic parameters throughout the process. Finally, Quintana et al., (2008) presented a first study on the analysis of two different approaches to modelling the crystallization kinetics based on an empirical power law type (TPL) equations and a mechanistic framework. That work suggested that surface-integration mechanism dominates in cane sugar crystallization.

The aim of this study is to present an analysis of the prediction capabilities for the crystallization kinetics obtained from empirical and mechanistic modelling approaches. The PBE incorporates the proposed models and solved using the method of lines. Experimental data collected from pilot-scale plant considering different agitation rates were used to validate the two modelling approaches against different operating conditions. The results will benefit future studies on modelling, optimization and real-time process control, considering the advantages and limitations of both modelling approaches for the cane sugar batch crystallization.

The structure of the article is as follows: the next section entitled Experimental set-up presents a brief description of the pilot-scale plant and instrumentation devices following by a summary of the operation strategy for the cane sugar batch crystallization. In addition, a general methodology that describes the image-based algorithm used for CSD quantification is presented in that section. The Methodology Section presents the general mathematical framework where the population balance equation (PBE) and their corresponding assumptions are considered. This section also includes the empirical and the mechanistic approaches to modelling the crystallization kinetics. The end of this section presents the parameter estimation analysis. Results and discussions section presents the simulations using both modelling approaches, with the aim to determine the accuracy of each approach. Experimental data validates the results from simulation. Finally, conclusions are presented at the end of this article.

2 Experimental set-up

2.1 Pilot-scale batch crystallizer

Figure 1 shows a schematic set-up of the pilot-scale plant batch crystallizer used in the experimental stage. A brief description of the experimental set-up is presented in Table 1, which includes a stainless steel batch crystallizer (pilot-scale plant) with a heating-
cooling jacket, steam generator, DC motor, vacuum pump, a direct contact condenser, a slurry trap and a tachometer that measure the agitation rate. The studies reported by Bolaños et al., (2008) and Bolaños et al., (2014) provide a detailed description of all the equipment and instrumentation devices installed in the actual pilot-scale plant.

The start-up begins by loading the saturated solution into the crystallizer. The solution is prepared with 6.569 kg of high purity commercial sugar and 2.528 kg of distilled water at 70 °C (density within 1.3594 - 1.3614 g/cm³) and is kept constant during 30 minutes with an agitation rate of 300 rpm to ensure a solution free of crystals. Then, the operation begins by loading 5 grams of seed crystals \(\text{D}(4,3) = 173.05 \, \mu m, \text{S}(4,3) = 18.72 \, \mu m \) through a vertically sampler into the crystallizer at the fifth minute (this avoids dissolution of seed crystals). During the first stage, the vacuum pressure is set to 76.20 kPa for 40 min and then increased up to 86.66 kPa, following a cooling natural profile. Sampling is performed at every 15 minutes to obtain experimental information about concentration (in terms of density) measured in a digital densimeter (Anton Paar DMA 4500, see description in Table 1), CSD and mass of crystals. A vertically sampler device introduced into the crystallizer takes two samples of slurry (solution and crystals) of 10 ml without affecting the vacuum pressure. Finally, it is applied a centrifugation at 3,000 rpm to separate crystals from the solution.

2.2 Image-based approach for CSD quantification

CSD quantification from the crystals obtained on each sample applies an image-based approach as an alternative technique to laser diffraction. This approach aims to determine the CSD from the crystals obtained on each sample.

Fig. 1. Pilot-scale batch crystallization plant.
Table 1. Devices of the experimental pilot-scale batch crystallizer

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMA 4500 (high-resolution with 1e-05 of significant figures) density measuring module, based on the proven oscillating U-tube principle ensuring highly accurate density values.</td>
</tr>
<tr>
<td>2</td>
<td>J type thermocouple, temperature of 0-760 ºC, cable length 1 m.</td>
</tr>
<tr>
<td>2</td>
<td>Thermowells. Stainless steel.</td>
</tr>
<tr>
<td>1</td>
<td>Vacuum pump Felisa FE-1400, 0.3 HP.</td>
</tr>
<tr>
<td>1</td>
<td>Proportional control solenoid valve, Burkert. Average temperature of 140 ºC, with digital controller.</td>
</tr>
<tr>
<td>6</td>
<td>2-way solenoid valve, normally closed, steel, Parker.</td>
</tr>
<tr>
<td>6</td>
<td>Flow valve to allow water and steam flow through pipes.</td>
</tr>
<tr>
<td>1</td>
<td>Pressure regulator Norgren Mexico.</td>
</tr>
<tr>
<td>2</td>
<td>Pressure transmitter, Cole-Parmer Model 68072-08.</td>
</tr>
<tr>
<td>1</td>
<td>Steam boiler, model MBA9 of SUSSMAN; maximum pressure, 100 Psi; work voltage, 240 VAC; control voltage, 120 VAC.</td>
</tr>
<tr>
<td>1</td>
<td>Hydraulic pump, QB60 Clean Water Pump, 1.5 HP.</td>
</tr>
<tr>
<td>1</td>
<td>Galvanized pipe system for water circulation.</td>
</tr>
<tr>
<td>1</td>
<td>High temperature insulation system.</td>
</tr>
<tr>
<td>1</td>
<td>Manometer, ASHCROFT.</td>
</tr>
<tr>
<td>1</td>
<td>Condenser, stainless steel surface.</td>
</tr>
<tr>
<td>1</td>
<td>Plastic tank 1100 L capacity.</td>
</tr>
<tr>
<td>1</td>
<td>Stainless steel crystallizer of 12.77 L, heating-cooling jacket of 11.10 L, four vertical wall baffles of 17 cm (wide) by 3.5 cm (length), agitation arrow of 39 cm (length).</td>
</tr>
<tr>
<td>1</td>
<td>Agitator for closed tank, model NSDB of HP, direct transmission of 1750 rpm (1 phase, 60 cycles), 110 VCA totally closed, without ventilation, stainless steel 316 with bridle of 4 in. (diameter) in stainless steel, with agitating arrow of 26 in. (length) and 1/2 in. of diameter in stainless steel 316; velocity investor (driver) integrated with rank from 0 to 1750 rpm</td>
</tr>
<tr>
<td>1</td>
<td>Marine propeller type impeller.</td>
</tr>
<tr>
<td>1</td>
<td>Programmable tachometer. Range from 50 to 999,990 rpm.</td>
</tr>
<tr>
<td>1</td>
<td>Optical sensor for distances of 3 ft. Range 1 -150000 rpm.</td>
</tr>
<tr>
<td>1</td>
<td>Monochrome camera with RS-170, video lens with 0.19 mm per pixel.</td>
</tr>
<tr>
<td>1</td>
<td>PC, Intel Pentium IV. Operating system XP, 4 GB RAM memory, hard disc of 1 TB</td>
</tr>
<tr>
<td>4</td>
<td>Data acquisition card (NI PCI-6023E, NI PCI-6025E, NI PCI-6711 and NI PCI-232/2). Analogic-digital and digital-analogic converters allow the input/output analogic and digital signals.</td>
</tr>
<tr>
<td>2</td>
<td>Signal conditioning module (NI SCC-TC02).</td>
</tr>
<tr>
<td>1</td>
<td>Image acquisition card (NI PCI-1409).</td>
</tr>
<tr>
<td>1</td>
<td>Galvanized steel condenser of direct contact with 2.27 m high and 0.3 m of diameter.</td>
</tr>
</tbody>
</table>
This procedure involves the image acquisitions using a microscope camera Carl Zeiss Micro Imaging GmbH with achromatic lens of 10X and the software Vision Assistant 2017 (National Instruments, Inc.). The imaging system is able to capture 10 images from the sample, which is later on processed through a threshold technique (Solomon and Breckom, 2011) to segment each individual’s crystals (Velázquez et al., 2010).

Areas with high density of crystals are isolated, manually analyzed, and counts the black pixels areas (crystals). The imaging system compares the black pixels areas with specific standards to identify the crystals presented according to binary images (background) (Hanks, 1997). CSD quantification involves the measure of an average of 100 crystal’s areas.

Furthermore, the approach uses a Neubauer’s camera to count the particles and determine a conversion factor through a calibration procedure (Bolaños et al., 2008; Bolaños et al., 2014), i.e. the conversion factor enables a direct relation from one pixel (one-pixel side) to 1.074 μm (length).

3 Methodology

3.1 General mathematical framework

This section presents the mathematical models used in this study to perform the analysis of the empirical and mechanistic approaches for batch crystallization kinetics of cane sugar. The vacuum batch crystallization model involves two phases: 1) a continuous liquid phase (distilled water and dissolved cane sugar) and 2) a dispersed solid phase (cane sugar crystals). The model also considers the mass transport generated by supersaturation, which affects the primary homogeneous nucleation \((n_{nu})\) and crystal growth \((n_{gr})\) (Glstlauer et al., 2002). The density’s number \((n)\) describes the crystal flux number of the dispersed solid phase in equation (1), which is a function of the crystal’s characteristic length \(L\) and processing time.

\[
\frac{\partial n(L,t)}{\partial t} = -\frac{\partial (G(t) \cdot n(L,t))}{\partial L} + n_{nu} \pm n_{al}
\]

(1)

Initial and boundary conditions for this system are as follows:

\[n(L,t = 0) = n_{seed}(L) \]

(2)

\[n(L = \infty,t) = 0 \]

(3)

In the case of seeding, Equation (2) gives the initial condition, where \(n_{seed}(L)\) specifies the CSD of the seeded crystals. Equation (3) specifies that no crystals with size \(L \to \infty\) are expected and are physically infeasible.

Since the continuous liquid phase is a binary mixture of distilled water and dissolved cane sugar, the phase’s dynamic behavior is described by the balance of the total number of moles \(n_{Liq}\). Equation (4) was adapted from the equation reported by Motz et al. (2002) for batch crystallization. This equation assumes that solvent molecules are not adhered to each other (i.e. \(a = 0\)).

\[
\frac{\partial n_{Liq}}{\partial t} = -((1 + a) \cdot n_{nu} - (1 + a) \cdot n_{gr} - n_{vap})
\]

(4)

The evaporation rate of water as a solvent \(n_{vap}\) is calculated based on the Hertz-Knudsen equation (Marek et al., 2001):

\[
n_{vap} = \alpha_v \left(\frac{M_w}{2 \pi RT_{cr}} \right)^{1/2} (p_V - p_I) M_w
\]

(5)

where \(\alpha_v\) is the adhesion coefficient, \(p_V\) and \(p_I\) are the liquid phase pressure and vapor phase pressure, respectively; \(M_w\) is the molar mass and \(R\) is the ideal gas constant.

In addition, Equation (6) shows the balance of moles number for dissolved crystals \(n_{Liq,A}\). Exchange fluxes \(n_{nu}\) and \(n_{gr}\) occur as development of new nuclei or crystal growth (Equations 7 and 8, respectively). Equation (9) specifies the initial conditions of state of the liquid phase in the batch.

\[
\frac{\partial n_{Liq,A}}{\partial t} = -n_{nu} - n_{gr}
\]

(6)

\[
n_{nu} = \frac{k_v \cdot \rho_s}{M_s} \int_{0}^{L_0} L^3 \cdot \delta(L - L_0) \cdot B_{nu} \cdot V_{liq} dL
\]

(7)

\[
n_{gr} = \frac{3 \cdot k_v \cdot \rho_s}{M_s} \int_{0}^{L_0} L^2 \cdot G \cdot n(L,t) dL
\]

(8)

\[
n_{liq}(t = 0) = n_{liq}(t = 0) = n_{liq,A}(t = 0) = n_{liq,A,0}
\]

(9)

To complete the model of a batch crystallizer, the energy balance should be considered. This model needs to be defined in terms of the temperature inside the crystallizer \(T_{cr}\) (Equation 10) and the temperature inside the cooling jacket \(T_j\) (Equation 11).

\[
C_p \frac{dT_{cr}}{dt} = -\Delta h_{cr} \cdot (n_{nu} + n_{gr}) + J_{cool}
\]

(10)

where \(C_p\) is the heat capacity of the liquid phase, \(\Delta h_{cr}\) is the enthalpy of sublimation of the crystals, and \(J_{cool}\) is the heat flux from the cooling jacket.
where \(C_{p,cr} \) is the heat capacity within crystallizer, \(\Delta h_{cr} \) is the molar heat due to crystallization, \(J_{cool} \) is the heat exchanged with the cooling jacket. Moreover, equation (11) defines the heat transfer inside the cooling jacket; \(C_{pj} \) and \(C_{pj}^* \) denote the heat capacity of the coolant and the molar heat capacity at the inlet, respectively. Furthermore, equations (12) and (13) specify the initial conditions for the energy balance equations. Equation (14) describes the energy flux \(J_{cool} \) included in equations (10) and (11).

\[
T_{cr}(t = 0) = T_{cr,0} \quad (12)
\]

\[
T_j(t = 0) = T_{j,0} \quad (13)
\]

\[
J_{cool} = -k_{cool} \cdot A_{cool}(T_{cr}) \quad (14)
\]

3.2 Mechanistic kinetic modelling approach

The mathematical framework proposed by Gahn and Mersmann (1999a, 1999b) is a suitable mechanistic model for this process since it covers a wide range operating conditions. The key assumption for this model is that the process must be dominated by secondary nucleation that appears in seeded crystallizers (Kalbasenka et al., 2011). The model describes the kinetics for nucleation, crystal growth and attrition in terms of the physical properties of the system. In this context, equation (15) represents the primary homogeneous nucleation rate.

\[
n_{nu} = 1.5 D_{AB} (C^* N_A)^{7/3} S^{2/3} \left(\frac{\gamma_{CL}}{k_{T,cr} C_C N_A} \right)^\frac{1}{3} \exp \left[-16 \pi \left(\frac{\gamma_{CL}}{k_{T,cr}} \right)^3 \left(\frac{1}{C_C N_A} \right)^2 \frac{1}{(\ln S)^2} \right] \quad (15)
\]

where \(C^* \) is the saturation concentration at temperature \(T_{cr} \), \(N_A \) is the Avogadro’s number, \(k \) the Boltzman constant \(C_C \), the molar crystal’s concentration and \(S \) is the supersaturation. The term \(D_{AB} \) is the diffusivity coefficient calculated to predict it at different operating conditions for temperature and concentration. A commonly expression for this purpose is the Stokes-Einstein equation (Mersmann, 2001):

\[
D_{AB} = \frac{k T_{cr}}{2 \pi \eta_L d_m} \quad (16)
\]

where \(d_m \) is the diameter of a molecule whereas \(\eta_L \) is the dynamic viscosity. Another important parameter that considers physical properties from the cane sugar crystals is the surface tension \(\gamma_{CL} \), defined in Equation (17). The parameter \(K \) has a value of 0.414, calculated experimentally by Mersmann (2001).

\[
\gamma_{CL} = k T_{cr} K (C_C N_A)^{2/3} \ln \left(\frac{C_C}{C_c} \right) \quad (17)
\]

For the crystal growth, cane sugar batch crystallization is dominated by surface integration (Quintana et al., 2008), whereby, its mathematical modelling turns out to be more complex thus requiring a model that takes into account both diffusion and integration of limited crystal growth. This works considers the physical model derived by Mersmann (2001) and implemented by Gerstlauer et al., (2002):

\[
\frac{G}{2 k_d(L)} = \frac{\Delta C}{k_C} + \frac{k_d(L)}{2 k_c C_C} - \left(\frac{k_d(L)}{2 k_c C_C} \right)^2 \frac{\Delta C}{k_c C_C} \quad (18)
\]

In this equation, \(k_r \) is an integration rate constant. Equation (19) calculates the mass transfer coefficient \(k_d(L) \).

\[
k_d(L) = \frac{D_{AB}}{L} \left[2 + 0.8 \left(\frac{L^4}{v^3} \right) \left(\frac{v}{D_{AB}} \right)^{1/3} \right] \quad (19)
\]

The attrition of crystals due to stirrer collisions is considered next. When a population of crystals has a collision with a stirrer, it produces three different particle number fluxes in the population balances. This can be explained as follows (Gerstlauer et al. 2002):

1. A particle number flux \(\dot{n}_{at}^- \) due to the removal of large original crystals that collide with the stirrer,

2. A particle number flux \(\dot{n}_{at}^+ \) due to the formation of an abraded original crystals with a length somewhat smaller than the original crystals, and,

3. A particle number flux \(\dot{n}_{at,1}^+ \) due to the formation of a distribution of attrition fragments resulting from the crystal-stirrer collision.

Based on the above, the overall particle number flux due to attrition \(\dot{n}_{at}^- \), which is considered in Equation (1), can be calculated as follows:

\[
\dot{n}_{at}^- (L) = \dot{n}_{at}^+ (L) + \dot{n}_{at,2}^+ (L) + \dot{n}_{at,1}^+ (L) \quad (20)
\]

where:

\[
\dot{n}_{at}^+ (L) = \beta(L) n(L) \quad (21)
\]
\[
\hat{n}^+_\text{at,2}(L) = \int L^c \delta \left(\frac{L^a - V_{p,\text{at}}(L')}{k_v} \right) \frac{1}{3/2} \beta(L')n(L')dL'
\]
\[\text{(22)}\]

\[
\hat{n}^+_\text{at,1}(L) = \int L^c \left[N_{\text{frag}}(L') \times [h(L - L_{\text{frag,\text{min}}}) - h(L - L_{\text{frag,\text{max}}}(L'))] \times f_{\text{frag}}(L, L') \beta(L')n(L')dL' \right]
\]
\[\text{(23)}\]

\(V_{p,\text{at}}(L')\) denotes the abraded volume that a crystal of length \(L'\) loses due to crystal-stirrer collision. \(k_v\) is the volumetric shape factor, having a value of \(\pi/6\) (Beckman, 2004) for a cane sugar crystal. \(f_{\text{frag}}\) is the size distribution of attrition fragments, \(N_{\text{frag}}\) is the number of attrition fragments, \(L_{\text{frag,\text{min}}}\) and \(L_{\text{frag,\text{max}}}(L')\) are the minimal and maximal fragment length, respectively.

3.3 Empirical kinetic modelling approach

Empirical models describing the behavior of different crystallization systems have been proposed in the literature (Nagy et al., 2003; Quintana et al., 2004; Ouiazzane et al., 2008). Although they are typically robust in the spanned range, these models need access to accurate experimental data to determine the kinetic parameters through parameter estimation. The simplest empirical expressions involve supersaturation raised to a constant and pre-exponential constant (Qiu et al., 2004). Some variants take into account the agitation rate, the mass of crystals (Quintana et al., 2004) and the activation energy (Mitchell et al., 2011). Equations (24) - (26) describes the primary nucleation, crystal growth rate and an empirical relationship for the birth and death rates generated by attrition and breakage of crystals, respectively. These expressions have been used in this work because they have been applied to simulate a wide range of operating conditions, e.g., optimal agitation rate under uncertainty (Bolaños et al., 2014), compute the metastable zone width (MSZW) (Kobari et al., 2010). In addition, these expressions have shown good predictions under a bounded range of operating conditions.

\[
B_{\text{hom}} = K_\rho S^b M_T^d N_f^p
\]
\[\text{(24)}\]

\[
G = K_\rho S^g N_f^h
\]
\[\text{(25)}\]

Equation (28) is a well-known density relationship proposed by Mersmann (2001), which make use of the data reported by Swindells et al., (1958) to calculate the viscosity of the sucrose-water solution in a range from 20% to 75% of sucrose mass and temperatures from 40 to 80 °C. This work uses such equation to estimate the solution’s density in the water.

\[
\rho_{\text{Liq}} = \frac{1 + \frac{M_r}{M_{\text{sol}}}}{1 + \left(\frac{\rho^0_{\text{Liq}}}{\rho_c}\right) \frac{M_r}{M_{\text{sol}}}}
\]
\[\text{(28)}\]

where \(\rho^0_{\text{Liq}}\) is the density of water, \(\rho_c\) is the density of crystals, \(M^0_{\text{Liq}}\) is the mass of solvent and \(M_r\) is the mass of crystals. Equation (29) gives the saturation concentration of sucrose \(C_{\text{sat}}\), (Ouiazzane et al., 2008), in terms of weight of dry substance (\(w_{DS}\)) (Equation 30).

\[
C_{\text{sat}} = \frac{w_{DS}}{100 - w_{DS}}
\]
\[\text{(29)}\]

\[
w_{DS} = 64.47 + 0.10336T_{es} + 14.20 \times 10^{-4}T^2 - 70.20 \times 10^{-7}T^3
\]
\[\text{(30)}\]

Table 2 lists the physical properties of sucrose and water. Velázquez et al., (2010) have reported the geometric properties of the crystallizer. For further information on physicochemical and geometrical properties on this system, the readers are referred to Gahn and Mersmann (1999a, 1999b), Ploβ and Mersmann (1989) and Gerstlauer et al., (2002).

3.5 Parameter estimation

The mechanistic framework requires of physical constants, i.e. \(k_r\) and \(\Gamma\), to fully specify the model.
Table 2. System’s physical properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{LA0}</td>
<td>19.21</td>
<td>mol—</td>
<td>—</td>
</tr>
<tr>
<td>n_{L0}</td>
<td>132.2</td>
<td>mol—</td>
<td>—</td>
</tr>
<tr>
<td>k_π</td>
<td>$\pi/6$</td>
<td>adim</td>
<td>Beckman (1994)</td>
</tr>
<tr>
<td>H_v</td>
<td>645×10^6 Pa</td>
<td>Duncan (1989)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.31</td>
<td>adim</td>
<td>Leigh (1967)</td>
</tr>
<tr>
<td>E</td>
<td>32.3×10^9 Pa</td>
<td>Duncan (1989)</td>
<td></td>
</tr>
<tr>
<td>M_a</td>
<td>0.342</td>
<td>kg/mol</td>
<td>Green & Perry (2007)</td>
</tr>
<tr>
<td>M_b</td>
<td>0.018</td>
<td>kg/mol</td>
<td>Green & Perry (2007)</td>
</tr>
<tr>
<td>Na</td>
<td>6.023×10^{23} l/mol</td>
<td>Gahn & Mersmann (1999a)</td>
<td></td>
</tr>
<tr>
<td>K_b</td>
<td>1.38×10^{-23} J/K</td>
<td>Gahn & Mersmann (1999a)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>8.3145</td>
<td>J/(K mol)</td>
<td>Gahn & Mersmann (1999a)</td>
</tr>
<tr>
<td>ρ_s</td>
<td>1588</td>
<td>kg/m3</td>
<td>Green and Perry (2007)</td>
</tr>
<tr>
<td>$C_{p,w}$</td>
<td>586.2</td>
<td>J/(kg K)</td>
<td>Bolaños et al., (2014)</td>
</tr>
<tr>
<td>$C_{p,s}$</td>
<td>2468.7</td>
<td>J/(kg K)</td>
<td>Bolaños et al., (2014)</td>
</tr>
<tr>
<td>T_0</td>
<td>70° C</td>
<td></td>
<td>Bolaños et al., (2008)</td>
</tr>
<tr>
<td>A_1</td>
<td>0.2004</td>
<td>m2</td>
<td>Bolaños et al., (2014)</td>
</tr>
<tr>
<td>α_v</td>
<td>0.27</td>
<td>adim</td>
<td>Marek, (2001)</td>
</tr>
</tbody>
</table>

Kalbasenka et al., (2011) determined these constants through parameter estimation by optimization from experimental data generated under different operating conditions. These constants are related to attrition phenomena and crystal growth and have a clear physical meaning: surface related energy increase Γ_S and the integration rate constant for crystal growth k_r. Gerstlauer et al., (2002) included a constant related to primary nucleation rate C_{het}, which represents the heterogeneity degree of primary nucleation. The present study formulates a least-squares optimization problem to determine those constants, i.e.

$$
\min \varnothing(\Gamma_S, k_r, C_{het}) = w_1 \sum_{i=1}^{N} \left(\frac{M_{T,i}^{cal} - M_{T,i}^{exp}}{M_{T,i}^{exp}} \right)^2 \\
+ w_2 \sum_{i=1}^{N} \left(\frac{D(4,3)^{cal}_i - D(4,3)^{exp}_i}{D(4,3)^{exp}_i} \right)^2 \\
+ w_3 \sum_{i=1}^{N} \left(\frac{\rho_{i}^{cal} - \rho_{i}^{exp}}{\rho_{i}^{exp}} \right)^2
$$

(31)

where, $M_{T,i}^{cal}$, $D(4,3)^{cal}_i$ and ρ_{i}^{cal} represent the mass of crystal in kg, average diameter of crystal (μm) in % Volume, and continuous phase density (m3/kg) at each sampling time (i) i.e. 15 min, 30 min, 45 min, 60 min, 75 min and 90 min, respectively; whereas w_n is a weight assigned to each term in the penalty function and used to uniformly weight each contribution. On the other hand, the empirical model requires eleven parameters: a, b, g, h, j, k, k_a, k_b, k_g, p and r, which need to be determined by the same procedure. The initial values used in the present analysis were taken from Quintana et al. (2008) for seeded batch crystallization of cane sugar. To solve problem (31), this work employed the constrained nonlinear programming function (fmincon) available in MATLAB. To ensure degrees of freedom in the analysis, each experiment (100, 300 and 600 rpm) was done three times, getting 54 measurements to estimate 11 parameters.

It is well known that the dynamic mathematical model of a batch crystallizer is highly nonlinear (Bolaños et al., 2014). To address that issue, problem (19) uses the multistart built-in function available in MATLAB with twenty randomly bounded initial values. This was done to improve parameter estimation...
from problem (31) by minimizing the error between the data generated by the simulation and experimental data at different agitation rates.

3.6 Population balance solution

The PBE was solved by applying a first order centered finite difference for the \(L\) domain, from \(L_{\min} = 1 \ \mu m\) to \(L_{\min} = 801 \ \mu m\) with a spacing of \(\Delta L = 10 \ \mu m\) where \(\Delta L = L_i - L_{i-1}\). Thus, a set of 80 ODEs for each step in the time defines the entire \(L\) domain. Significant differences between the mechanistic and the empirical models exist. While the mechanistic model accounts for variations in the crystal growth rate as a function of the characteristic length, empirical models assume that this rate is constant regardless characteristic crystal length. The term \(\alpha(L_i)\) describes the rate of appearance and disappearance of crystals for the empirical framework. Nevertheless, secondary nucleation through attrition replaces the \(\alpha(L_i)\) term in the mechanistic framework. This results in the implementation of different discretization schemes by centered finite difference for each approach as shown in Equations (32) and (33). The solution of the full mathematical framework uses the \(ode15s\) function available in MATLAB, which implements the backward differentiation formulas (also known as Gear’s method).

\[
\begin{align*}
\frac{dn(L_i,t)}{dt} &= \frac{Gn(L_{i+1},t) - Gn(L_{i-1},t)}{2\Delta L} + n(L_i,t)_{at} + n(L_i,t)_{nu} + n(L_i,t)_{nu} + \alpha(L_i) \\
\frac{dn(L_i,t)}{dt} &= \frac{Gn(L_{i+1},t) - Gn(L_{i-1},t)}{2\Delta L} + n(L_i,t)_{at} + n(L_i,t)_{nu} + \alpha(L_i)
\end{align*}
\]

Equation (32) and (33)

3.7 Modelling assumptions

To simplify the mathematical model, the following assumptions were considered:

- Negligible agglomeration crystals.
- Crystal nuclei produced have negligible size.
- The system is well mixed.
- The crystals inside the tank are well suspended, i.e., no accumulation of crystals at the bottom of the crystallizer.

3.8 Seed’s CSD

Equation (2) and (3) lists the initial and boundary conditions for the PBE considered in this work.

<table>
<thead>
<tr>
<th>Table 3. Seed’s characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (m)</td>
</tr>
<tr>
<td>Mass (kg)</td>
</tr>
<tr>
<td>(\lambda_i)</td>
</tr>
<tr>
<td>(S(4,3)_{seed}) (m)</td>
</tr>
<tr>
<td>(D(4,3)_{seed}(m))</td>
</tr>
</tbody>
</table>

The seeded crystals were obtained from commercial cane sugar \(D(4,3) = 450 - 550 \ \mu m\) with high purity concentration, which was crushed and then classified using sieves of size 150 \(\mu m\), 180 \(\mu m\) and 212 \(\mu m\) (sieves No. 70, 80 & 100 according with the American Standard Test Sieve Series (ASTM)). Crystals retained in the sieve of 180 \(\mu m\) were selected. The CSD approximates to a normal distribution using Equation (34) (Hermanto et al., 2008). Table 3 includes the required parameters needed to solve Equation (34).

\[
F(L,0) = F_{seed,i}(L,0) = \frac{\lambda_i}{\sqrt{2\pi\sigma_{seed}}} \exp\left(\frac{-(L-\mu_{seed})^2}{2\sigma_{seed}^2}\right)
\]

4 Results and discussion

4.1 Temperature profile

In the first experimental test, the vacuum pressure was set to 76.20 kPa producing a suddenly change in temperature from 70 °C to 58 °C within the first 10 minutes. This sudden decrease in temperature is attributed to the fast increase in vacuum pressure from 0 kPa to 76.20 kPa (air extraction), where the system reaches the thermodynamic equilibrium. After 40 minutes of this process, the system reaches a vacuum pressure of 86.66 kPa, and generates a natural cooling profile. The trajectory described for both cooling stages are different mainly due to the vacuum pump. At the beginning, the vacuum pump reaches 76.20 kPa due to the great amount of air inside the crystallizer but after 40 minutes, the system takes a longer time to reach 86.66 kPa (water steam) thus producing a trajectory that follows a natural profile. Supersaturation controls these programmed paths to keep the concentration close to solubility curve (Equation 28). Figure 2 shows that the predicted profile for both approaches, i.e. empirical (TPL) and mechanistic. As shown in this figure, the models describe adequately the temperature trajectory with respect to experimental data.
Figure 2. Temperature profile validation for mechanistic and TPL approach.

Note that the cooling stage (40 - 90 min) presents minor deviations. A deep analysis of the experimental set-up shows that the vacuum generation system has a time delay, which was not included in the present mathematical framework. Both modelling approaches take into account the changes in vacuum pressure, reflecting changes in the temperature, increasing the prediction capabilities.

4.2 Concentration profile

Phenomena such as primary and secondary nucleation affect the solute concentration as described below. Solution’s concentration needs to reach the metastable zone to form embryos of critical size \(L_{crit} \) (Mersmann, 2001), which grow as long as there is dissolved solute available (Jones, 2002). On the other hand, attrition and breakage produce smaller crystals that limit the growth of the early formed crystals since they have to compete for the dissolved solute. Figures 3a - 3c shows the experimental data and the predicted concentration profiles generated from Eq. (4) by using the empirical (TPL) and mechanistic modelling approaches at 100, 300 and 600 rpm, respectively.

Major deviations of the mechanistic approach from the experimental data are evident for all the experiments. This lack of fitting can be attributed to the diffusion-integration growth mechanism that dominates the cane sugar crystallization (Quintana et al., 2008), generating lower mass transfer of dissolved solute to crystals faces than the predicted for the mechanistic approach.

Fig. 3. Concentration profile for agitation rate: a) 100 rpm, b) 300 rpm and c) 600 rpm
Table 4. Concentration errors (ϵ)

<table>
<thead>
<tr>
<th>Agitation rate</th>
<th>Mechanistic</th>
<th>TLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 rpm</td>
<td>7.76%</td>
<td>3.27%</td>
</tr>
<tr>
<td>300 rpm</td>
<td>4.98%</td>
<td>3.18%</td>
</tr>
<tr>
<td>600 rpm</td>
<td>4.09%</td>
<td>3.05%</td>
</tr>
</tbody>
</table>

However, empirical models (TPL) fit better than mechanistic approach due to the use of estimated parameters. The use of different agitation rates produces variations in the concentration (see Figures 3a - 3c) due to the increase in mass transport of dissolved solute to crystals faces and the effect that on the solvent evaporation rate.

Moreover, the mechanistic approach can capture the increase in concentration due to the evaporation of solvent at the beginning of process (0 - 10 min). This is explained as follows: as the solvent is evaporated, the concentration reach the metastable zone (nucleation), then, concentration is decreased again due to the mass transfer from the dissolved solute towards the crystals. On the other hand, the empirical approach (TPL) only captures the decrease in concentration. This result is remarkable, while there is a recent interest in the dynamic regulation for the cooling temperature trajectory applied to a batch system with the aim to reduce the crystals formed from undesired nucleation rate (Seki & Su, 2015), being the mechanistic approach the most suitable alternative to handle this kind of control approaches.

Table 4 presents the errors by using Eq. (25) for each modelling approach against experimental data. Both approaches have major deviations at low agitation rate (i.e. 100 rpm). For 300 and 600 rpm, both approaches show acceptable errors. From this section, the results show that the empirical approach (TPL) has better kinetic modelling predictions to represent the experimental concentration.

\[\epsilon = 100 \cdot \sum_{i=1}^{n} \left(\frac{C_{\text{exp}} - C_{\text{sim}}}{C_{\text{exp}}} \right)^2 \]

(35)

4.3 Crystallization kinetics

The constants obtained by applying the procedure described in Section 3.5 are $k_r = 9.1 \times 10^{-4}$ (m4 / mol s), $\Gamma_s = 1.38 \times 10^{-6}$ (J m / mol) and $C_{\text{het}} = 0.8$. This is the first work that reports data estimation for the mechanistic modelling approach for cane sugar batch crystallization; hence, a comparison against previous work is not available.

![Fig. 4. Primary nucleation from mechanistic approach under 100, 300 and 600 rpm.](image)

Fig. 4. Primary nucleation from mechanistic approach under 100, 300 and 600 rpm.

Opposed to the mechanistic approach, there are available experimental data reported for empirical kinetic approach (Quintana et al., 2004, Quintana et al., 2008, Bolaños et al., 2014). Table 5 presents the results obtained in this work and a comparison with data reported by Quintana et al., (2008) and Bolaños et al., (2014). As reported in Quintana et al., (2004), each set of operating conditions has specific kinetic parameters, hence we expect differences between the data reported previously and that obtained in this work, due to both data were obtained at different vacuum pressures and cooling temperature trajectories.

4.3.1 Primary nucleation

The primary nucleation affects the CSD due to the increase in population of crystals with a length close to L_{crit}. Although this phenomenon can occur during the evolution of this process, it takes place just when the supersaturation (S_r) reaches the metastable zone. The mechanistic approach (Eq. 15) well describes this behavior (see Figure 4) where a pulse response denotes the primary nucleation with three agitation rates, which only takes place early in process, i.e. within the first 15 min of the batch. Figure 5 shows the primary nucleation for the empirical model (TPL) as a continuous and ascendant dynamic response to the same agitation rates.

As previously mentioned, Figures 4 and 5 have different dynamic responses, mainly due to the differences in the mathematical formulation for each modelling approach.
Table 5. Empirical kinetic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary homogeneous nucleation</th>
<th>Crystal growth</th>
<th>Crystal death and birth</th>
</tr>
</thead>
</table>

where theoretically should not appear homogeneous primary nucleation. Related with the agitation rate, 100 rpm and 600 rpm has the same nucleation rate: \(2.0 \times 10^6\) (No. of particle/m³ min), opposed with the case with 300 rpm, where the pulse response reach values for \(2.7 \times 10^6\) (No. of particle/m³ min). Experimentally, these results are explained as follows: for low agitation rates (100 rpm), the concentration is not uniform inside the crystallizer allowing the presence of micro-volumes (\(\Delta V\)), where only some of them have the concentration needed to generate nucleation, decreasing the global nucleation rate. For the case of high agitation rate (600 rpm), the minimum size of a nuclei (\(L_{crit}\)) increase, avoiding the early formation of new crystals.

Prediction for primary nucleation rate by using TPL approach shows an increasing trend. Due to the mathematical formulation (see Eq. 24), supersaturation has a strong effect at the beginning of the process, where high values of supersaturation are reached due to the evaporation of solvent. Then, after supersaturation go downwards; the increment of nucleation rate promotes the formation of new particles, according to Eq. (24), nucleation rate depends on mass of crystals which increases during all process and produces different nucleation rates at the end of process.
Figure 5 shows the three nucleation rates predicted by Eq. (24), getting final values of 4,607.71, 4,849.97 and 5,237.96 No. of particles/cm3 min for 100, 300 and 600 rpm, respectively.

4.3.2 Secondary nucleation

Figures 6a - 6c shows the variation of the characteristic length (L) of the abraded crystals at agitation rate of 100 rpm, 300 rpm and 600 rpm, resulting from Eq. (20). The population (z axes) represents the particle number of abraded original crystals and the particle number of generated crystals somewhat smaller than the original crystal and the crystals abraded. The mechanistic framework predicts an increase in the overall particle flux number given that attrition is proportional to the characteristic crystal length. Thus, the attrition phenomena have a stronger effect into crystals greater than 350 µm, 400 µm and 550 µm for 100 rpm, 300 rpm and 600 rpm, respectively, showing a sharp decreasing in the overall flux number. However, by population balance (Eq. 32), at different L intervals, particles can be lost for attrition (death crystals) producing negative values in the overall flux number (sharp decreasing) if there are not particles going in the L interval. This is observed in Figures 6a - 6c when the crystal lengths reach 400 - 600 µm (at different times).

Nowadays, it is not possible to validate the predicted values by the mechanistic model due to the lack of experimental data and the difficulty in measuring the abraded crystal size online.

4.3.3 Crystal growth rate

Figure 7 shows the results for crystal growth rate from the mechanistic approach (Eq. 18). It is clear how agitation rate affects the growth of crystals. 600 rpm promotes faster growth at 20 min of process (In this time, the process arises the maximum relative supersaturation) compared to 100 and 300 rpm. Towards the end of the process, crystal growth rate should reach a zero value (thermodynamic equilibrium); the three agitation rates allow the crystal growth rate to reach values close to zero, where the value of 600 rpm again predicts better values (close to 0) compared to 100 and 300 rpm.
Fig. 7. Crystal growth from mechanistic approach under 100, 300 and 600 rpm.

4.4 Average crystal diameter $D(4,3)$

Figures 8a - 8c show that the mechanistic model predicts a peak on the $D(4,3)$’s path around the 6 minute for the experiments conducted at the three different agitation rates. This can be explained as follows: the seed fed grows without any generation of new nuclei until, by effect of solvent evaporation, saturated solutions achieve the metastable limit for growth zone. Once completed, the primary nucleation phenomena take place (see Figure 4). These new nuclei of length L_{crit} reduce the average crystal diameter $D(4,3)$. Empirical models do not predict such exhibited behavior in the evolution of the $D(4,3)$ (Figures 8a-8c).

In the case of an agitation rate of 100 rpm, mechanistic and empirical approaches follow the same behavior with coefficients of determination (R^2) of 0.95 and 0.94, respectively; as it is shown in Figure 8a.

For a constant agitation rate of 300 rpm the R^2 are 0.98 and 0.95 for the mechanistic and empirical models, respectively (see Figure 8b). Regarding the results for an agitation rate of 600 rpm (see Figure 8c), an R^2 of 0.80 is obtained for empirical models. On the other hand, mechanistic models follow the behavior observed from the experimental data. According to Mersmann et al. (2002), the generated fragments by attrition is proportional to the dynamic pressure of the crystallizer, which increases as the square of the tangential velocity of the agitator and the particle density.

Fig. 8. $D(4,3)$ for: a) 100 rpm, b) 300 rpm and c) 600 rpm.
The mechanistic framework describes this phenomenological behavior in detail. Hence, the capable of prediction of these models is more accurate for crystallization processes where secondary nucleation occurs (Kalbasenka et al., 2011).

4.5 Mass of crystals

Figures 9a-9c show the mass of crystals at the three different agitation rates studied in this work. The empirical model returned R^2 of 0.92, 0.92, and 0.91 (when compared to the experimental data) for 100 rpm, 300 rpm and 600 rpm, respectively. Similarly, mechanistic models have R^2 of 0.96, 0.94 and 0.95. Figures 9a-9c also show that there are no significant variations in the amount of mass of crystals at the end of the batch; Akrap et al., (2010) and Bolaños et al., (2014) reported that the agitation rate and profiles do not affect the mass of crystals during the batch.

From the results, mechanistic approach allows a better representation of experimental data and should be applied for accurate simulation of cane sugar crystallization. In the case of the TPL approach, results show minor deviations compared with experimental data, with the advantage of easy solution where no physicochemical properties are needed to solve it, property with use in model-based (dynamic) optimization.

Conclusions

This work presented an analysis between empirical and mechanistic approaches of kinetics for vacuum batch crystallization of cane sugar. Unlike the empirical approach, the mechanistic model predicts the expected behavior for the primary nucleation, following a pulse response. Primary nucleation should not occur throughout the process if temperature profiles drive the solute concentration. However, both approaches fail at describing the continuous phase density. The empirical approach is not adequate to predict nucleation rates when working with different operating conditions for which the kinetic parameters were originally adjusted (temperature, vacuum pressure and agitation speed). The secondary nucleation rate is predicted adequately only by the mechanistic approach, since it generates satisfactory information on the size of crystals (L) that loose from mechanical effects, and crystals that are born by attrition (fragments). This approach represents a better
option than the TPL for inclusion in the population balance equation and its solution by method of lines.

The growth rate of crystals must be adequately calculated, since it is the basis of the prediction of the average crystal size in % volume D(4,3). The formulated mechanistic approach considers the diffusion-integration mechanism and allows a good correlated prediction with the solution’s concentration.

The kinetic constants obtained for the mechanistic and empirical models have similar orders of magnitude compared to those reported in previous studies. In the cases of agitation rates of 100 rpm and 300 rpm, it is shown that both approaches have higher coefficients of determination than 0.9 for the D(4,3) and mass of crystals. In the case for 600 rpm, the discrepancies observed in the empirical model in the D(4,3) can be attributed to the attrition phenomena, which is not accurately captured by the term of birth and death of crystals.

Finally, from the results of both approaches and experimental validation, we conclude that mechanistic approach best represents the dynamic behavior of cane sugar batch crystallization under different operational conditions than the empirical approach (TPL).

Acknowledgements

The authors would like to acknowledge the support of the National Council of Science and Technology (CONACyT) for the financing granted to this project and the international scholarship provided to the student of the Master’s Degree in Sciences in Chemical Engineering Lazaro Elioenai Hernandez Ariza. In addition, the authors would like to acknowledge the Emerging Leaders in the Americas Program (Canada) for the funding provided.

Nomenclature

\(A_{cool} \) heat transfer area, m
\(B_{nu} \) primary nucleation rate, 1/ m³ s
\(C \) molar concentration, kmol/ m³
\(C^* \) saturation molar concentration, kmol/ m³
\(C_C \) crystal molar concentration, kmol/ m³
\(C_{exp} \) experimental concentration, kg/m³
\(C_{sim} \) simulated concentration, kg/ m³
\(C_p \) heat capacity, kJ/kg
\(d_m \) molecule diameter, m
\(D(4,3) \) average diameter in % volume, m
\(D_{AB} \) diffusion coefficient, m²/s
\(dL \) change in crystal length, m
\(dv \) change in crystal growth rate, m/s
\(\partial G \) change in total enthalpy
\(G \) growth rate of individual crystal, m/s
\(k \) Boltzmann constant, 1.381×10⁻²³ J/K
\(k_r \) integration rate constant
\(k_V \) volume shape factor, dimensionless
\(k_d \) mass transfer coefficient for crystal growth, m/s
\(K \) factor, dimensionless
\(L \) crystal length, m
\(L_{frag} \) fragment length, m
\(M_w \) molecular weight, kmol
\(M_T \) total mass of crystals, kg
\(N_A \) Avogadro’s number, 6.023 × 10²³ kmol⁻¹
\(N \) number density function, 1/m³
\(n_{at} \) individual particle number fluxes due to attrition at the stirrer, 1/m s
\(n_{cool} \) cool water rate, m³
\(n_{gr,nu} \) molar fluxes between liquid phase and solid phase due to growth and primary nucleation, mol/s
\(n_{liq} \) total number of moles in the liquid phase, mol
\(n_{evap} \) evaporation flux, kg
\(p_l \) liquid pressure, kPa
\(p_V \) vapor pressure, kPa
\(R \) gas constant, J/mol K
\(S_r \) supersaturation ratio, dimensionless
\(S(4,3) \) standard deviation in % volume, µm
\(t \) time, min
\(T_{cr} \) absolute temperature of the crystallizer, K
\(V_{liq} \) volume of liquid phase, m³
\(V_{Patt} \) abraded volume of crystals, m³
\(v \) stoichiometric coefficient
\(w_{DS} \) weight of dry substance, Brix

Greek symbols

\(\epsilon \) error, dimensionless
\(\bar{\epsilon} \) specific energy dissipation rate of stirrer, W/kg
\(\alpha_V \) adhesion coefficient
\(\beta \) attrition rate, 1/s
\(\eta_L \) dynamic viscosity, Pa·s
References

