CORN BRAN AS POTENTIAL SUBSTRATE FOR HIGH PRODUCTION OF FERULOYL AND ACETYLXYLAN ESTERASES BY SOLID STATE FERMENTATION

  • M. A. Camacho Ruiz Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • R. M. Camacho Ruiz Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • M. Armendariz Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • L. Ramirez Velasco Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • A. Asaff Torres Centro de Investigación en Alimentación y Desarrollo A.C.
  • A. Levasseur Universidad Aix-Marsella
  • J. C. Mateos Diaz Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • J. A. Rodriguez Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
Keywords: feruloyl esterase, acetylxylan esterase, corn bran, Aspergillus niger, solid state fermentation

Abstract

The aim of this study was to investigate some carbohydrate esterases production from a filamentous fungus grown by solid state fermentation on corn bran as substrate, mixed with polyurethane as support (75:25, w:w), and its comparison
with other agro-industrial by-products (wheat bran and coffee pulp) in the same conditions. Aspergillus niger, a known producer of feruloyl and other carbohydrate esterases, was used as fungal model. Cultures with corn bran induced a high
production of feruloyl esterase type A and B activity: 5.27 and 0.66 U gˉⁱ of dry matter over methyl ferulate and caffeate hydrolysis, respectively. Furthermore, in cultures with coffee pulp it is selectively induced the production of feruloyl
esterase B activity compared to other by-products used. A zymographic analysis of extracts of cultures on corn and wheat bran revealed another enzyme, later identified as acetylxylan esterase A, capable to hydrolyze methyl hydroxycinnamates
and p-nitrophenyl acetate. Activity on p-nitrophenyl acetate was 33.4 U gˉⁱ of dry matter on cultures grown on corn bran. This work is the first report of high production of feruloyl and acetylxylan esterases using corn bran as substrate, which are
enzymes of increasing biotechnological interest.

References

Agger, J., Vikso-Nielsen, A. and Meyer, A.S. (2010). Enzymatic xylose release from pretreated corn bran arabinoxylan: Differential effects of deacetylation and deferuloylation on insoluble and soluble substrate fractions. Journal of Agricultural and Food Chemistry 58, 6141.

Asther, M., Haon, M., Roussos, S., Record, E., Delattre, M., Lesage-Meessen, L., Labat, M. and Asther, M. (2002). Feruloyl esterase from Aspergillus niger: A comparison of the production in solid state and submerged fermentation. Process Biochemistry 38, 685.

Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Meessen, L., Sigoillot, J.C., Asther, M. and Asther, M. (2006). Feruloyl esterases as a tool for the release of phenolic compounds from agroindustrial by-products. Carbohydrate Research 341, 1820.

Biely, P. (2012). Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnology Advances 30, 1575.

Biely, P., Puls, J. and Schneider, H. (1985). Acetylxylan esterases in fungal cellulolytic systems. FEBS Letters 186, 80.

Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009). The carbohydrate-active enzymes database (cazy): An expert resource for glycogenomics. Nucleic Acids Research 37, D233.

Cao, Y.C., Yang, H.J. and Zhang, D.F. (2013). Enzymatic characteristics of crude feruloyl and acetyl esterases of rumen fungus Neocallimastix sp. YAK11 isolated from yak (Bos grunniens). Journal of Animal Physiology and Animal Nutrition 97, 363.

Crepin, V.F., Faulds, C.B. and Connerton, I.F. (2004). Functional classification of the microbial feruloyl esterases. Applied Microbiology and Biotechnology 63, 647.

Chahinian, H. and Sarda, L. (2009). Distinction between esterases and lipases: Comparative biochemical properties of sequence-related carboxylesterases. Protein & Peptide Letters 16, 1149.

Christov, L.P. and Prior, B.A. (1993). Esterases of xylan-degrading microorganisms: Production, properties, and significance. Enzyme and Microbial Technology 15, 460.

de Vries, R.P., vanKuyk, P.A., Kester, H.C.M. and Visser, J. (2002). The Aspergillus nigerFAEB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochemical Journal 363, 377.

de Vries, R.P. and Visser, J. (1999). Regulation of the feruloyl esterase (FAEA) gene from Aspergillus niger. Applied and Environmental Microbiology 65, 5500.

Donaghy, J.A. and McKay, A.M. (1995). Production of feruloyl/rho-coumaroyl esterase activity by Penicillium expansum, Penicillium brevicompactum and Aspergillus niger. The Journal of Applied Bacteriology 79, 657.

Faulds, C.B. (2009). What can feruloyl esterases do for us? Phytochemistry Reviews 9, 121.

Faulds, C.B., Bartolome, B. and Williamson, G. ´(1997). Novel biotransformations of agroindustrial cereal waste by ferulic acid esterases. Industrial Crops and Products 6, 367.

Garcia, B.L., Ball, A.S., Rodriguez, J., Pérez-Leblic, M.I., Arias, M.E. and Copa-Patino, J.L. (1998). Induction of ferulic acid esterase and xylanase activities in Streptomyces avermitilis UAH30. FEMS Microbiology Letters 158, 95.

Ghatora, S.K., Chadha, B.S., Saini, H.S., Bhat, M.K. and Faulds, C.B. (2006). Diversity of plant cell wall esterases in thermophilic and thermotolerant fungi. Journal of Biotechnology 125, 434.

INEGI (2012). El Sector Alimentario en México 2012. (INEGI,ed.), Pp. 1. México.

Johnson, K.G., Harrison, B.A., Schneider, H., MacKenzie, C.R. and Fontana, J.D. (1988). Xylan-hydrolysing enzymes from Streptomyces spp. Enzyme and Microbial Technology 10, 403.

Koseki, T., Furuse, S., Iwano, K. and Matsuzawa, H. (1998). Purification and characterization of a feruloylesterase from Aspergillus awamori. Bioscience, Biotechnology, and Biochemistry 62, 2032.

Kroon, P.A., Faulds, C.B. and Williamson, G. (1996). Purification and characterization of a novel esterase induced by growth of Aspergillus niger on sugar-beet pulp. Biotechnology and Applied Biochemistry 23, 255.

Kumar, C.G., Kamle, A., Mongolla, P. and Joseph, J. (2011). Parametric optimization of feruloyl esterase production from Aspergillus terreus strain GA2 isolated from tropical agroecosystems cultivating sweet sorghum. Journal of Microbiology and Biotechnology 21, 947.

Levasseur, A., Benoit, I., Asther, M., Asther, M. and Record, E. (2004). Homologous expression of the feruloyl esterase B gene from Aspergillus niger and characterization of the recombinant enzyme. Protein Expression and Purification 37, 126.

Linden, J., Samara, M., Decker, S., Johnson, E., Boyer, M., Pecs, M., Adney, W. and Himmel, M. (1994). Purification and characterization of an acetyl esterase from Aspergillus niger. Applied Biochemistry and Biotechnology 45-46, 383.

Mattila, P. and Kumpulainen, J. (2002). Determination of free and total phenolic acids in plant-derived foods by hplc with diode-array detection. Journal of Agricultural and Food Chemistry 50, 3660.

Moussou, P., Danoux, L., Jeanmaire, C. and Pauly, G. (2004). EP1437117.

Navarrete, M., Callegari, E. and Eyzaguirre, J.(2012). The effect of acetylated xylan and sugar beet pulp on the expression and secretion of enzymes by Penicillium purpurogenum. Applied Microbiology and Biotechnology 93,723.

Ou, S., Zhang, J., Wang, Y. and Zhang, N. (2011). Production of feruloyl esterase from Aspergillus niger by solid-state fermentation on different carbon sources. Enzyme Research 2011, 848939.

Pérez-Morales, G.G., Ramírez-Coronel, A., Guzman-López, O., Cruz-Sosa, F., Perraud- Gaime, I., Roussos, S. and Saucedo-Castaneda, G. (2011). Feruloyl esterase activity from coffee pulp in solid-state fermentation. Food Technology and Biotechnology 49, 352.

Ramirez, L., Arrizon, J., Sandoval, G., Cardador, A., Bello-Mendoza, R., Lappe, P. and MateosDiaz, J.C. (2008). A new microplate screening method for the simultaneous activity quantification of feruloyl esterases,tannases, and chlorogenate esterases. Applied Biochemistry and Biotechnology 151, 711.

Record, E., Asther, M., Sigoillot, C., Pages, S., Punt, P.J., Delattre, M., Haon, M., van den Hondel, C.A., Sigoillot, J.C., Lesage-Meessen, L. and Asther, M. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Applied Microbiology and Biotechnology 62, 349.

Reyes-Ocampo, I., González-Brambila, M. and López-Isunza, F. (2013). An analysis of the metabolism of Aspergillus niger growing over a solid substrate. Revista Mexicana de Ingeniería Química 12, 41.

Rodriguez, J.A., Mateos Diaz, J.C., Nungaray, J., González, V., Bhagnagar, T., Roussos, S., Cordova, J. and Baratti, J. (2006). Improving lipases production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochemistry 41, 2264.

Sa-Pereira, P., Duarte, J. and Costa-Ferreira, M. (2000). Electroelution as a simple and fast protein purification method: Isolation of an extracellular xylanase from Bacillus sp. CCMI 966. Enzyme and Microbial Technology 27, 95.

Shin, H.-D. and Chen, R.R. (2006). Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme and Microbial Technology 38, 478.

Singh, R., Gupta, N., Goswami, V.K. and Gupta, R.(2006). A simple activity staining protocol for lipases and esterases. Applied Microbiology and Biotechnology 70, 679.

Tabka, M.G., Herpoel-Gimbert, I., Monod,F., Asther, M. and Sigoillot, J.C. (2006).Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment.Enzyme and Microbial Technology 39, 897.

Topakas, E., Vafiadi, C. and Christakopoulos, P.(2007). Microbial production, characterization and applications of feruloyl esterases. Process Biochemistry 42, 497.

Torres-Mancera, M.T., Cordova-López, J., Rodríguez-Serrano, G.R., S., Ramírez Coronel, M.A., Favela-Torres, E. and Saucedo Castañeda, G. (2011). Enzymatic extraction of hydroxycinnamic acids from coffee pulp. FoodTechnology and Biotechnology 49, 369.

Udatha, D.B., Kouskoumvekaki, I., Olsson, L. and Panagiotou, G. (2011). The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnology Advances 29, 94.

Vafiadi, C., Topakas, E., Alissandratos, A., Faulds, C.B. and Christakopoulos, P. (2008). Enzymatic synthesis of butyl hydroxycinnamates and their inhibitory effects on ldl-oxidation. Journal of Biotechnology 133, 497.

Valdez-Vazquez, I., Acevedo-Benítez, J.A. and Hernández-Santiago, C. (2010). Distribution ´and potential of bioenergy resources from agricultural activities in Mexico. Renewable and Sustainable Energy Reviews 14, 2147.

Williamson, G., Kroon, P.A. and Faulds, C.B. (1998). Hairy plant polysaccharides: A close shave with microbial esterases. Microbiology 144, 2011.

Zhang, J., Siika-Aho, M., Tenkanen, M. and Viikari,L. (2011). The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnology for Biofuels 4, 60.
Published
2019-11-19
How to Cite
Camacho Ruiz, M., Camacho Ruiz, R., Armendariz, M., Ramirez Velasco, L., Asaff Torres, A., Levasseur, A., Mateos Diaz, J., & Rodriguez, J. (2019). CORN BRAN AS POTENTIAL SUBSTRATE FOR HIGH PRODUCTION OF FERULOYL AND ACETYLXYLAN ESTERASES BY SOLID STATE FERMENTATION. Revista Mexicana De Ingeniería Química, 15(1), 11-21. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1013
Section
Biotechnology