• I. Peraza-Baeza Institute at Arizona State University
  • A. Peréz-Hernández
  • L. Blanco-Cocom Mathematics Research Center (CIMAT),
  • J. Domínguez-Maldonado
  • L. Alzate-Gaviria
Keywords: microbial fuel cell, anodic biofilm, modeling, waste treatmen


This paper presents a mathematical model developed in order to predict the anodic biofilm growth, considering the oscillatory behavior of the pH in the anodic chamber and the microbial kinetics. The kinetic parameters were estimated using a modified genetic algorithm. The results obtained by simulations provide a good fitting to the experimental data, indicating an optimum pH of 7.12 and qmax = 0.15 g Ac g X−1 day−1 . The anodic biofilm shows slow growth kinetics, meaning that the substrate concentration gradients were important up until the final stage of growth and showing prevalence of active biomass up to 22 micrometers away from the electrode. The increase of the current density obtained is associated with the increase of the biofilm thickness


Blanco-Cocom L., Guerrero-Alvarez A., Dom´ınguez-Maldonado J., Avila-Vales E., Alzate-Gaviria L. (2013). Mathematical model for a continuous hydrogen production system: Stirred fermenter connected to a biocatalyzed electrolysis cell. Biomass and Bioenergy 48, 90-99.

Dom´ınguez-Maldonado J.A., Garc´ıa-Rodr´ıguez O., Aguilar-Vega M., Smit M., Alzate-Gaviria L. (2014). Reduction of cation exchange capacity in a microbial fuel cell and its relation to the power density. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 527-538.

Fanga F., Zanga G., Suna M., Yua H. (2013). Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach. Applied Energy 110, 98-103.

Gorby Y.A., Yanina S., Mclean J.S., Rosso K.M., Moyles D., Dohnalkova A., Beveridge T.J., Chang I.S., Kim B.H., Kim K.S., Culley D.E., Reed S.B., Romine M.F., Saffarini D.A., Hill E.A., Shi L., Elias D.A., Kennedy D.W., Pinchuk G., Watanabe K., Ishii S., Logan B., Nealson K.H., Fredrickson J.K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR1 and other microorganisms. PNAS USA 103, 11358-11363.

Korth B., Rosa L., Harnisch F., Picioreanu C. (2015). A framework for modeling electroactive microbial biofilms performing direct electron transfer. Bioelectrochemistry 106, 194-206.

Lee H., Parameswaran P., Kato-Marcus A., Torres C.I., Rittmann B.E. (2008). Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and nonfermentable substrates. Water Research 42, 1501-1510.

Lee H.S., Torres C.I., Rittmann B.E. (2009). Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Environmental Science & Technology 43, 7571-7577.

Logan B.E., Hamelers B., Rozendal R., Schroder U.,Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology 40, 5181-5192.

Marcus A.K., Torres C.I., Rittmann B.E. (2011). Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model. Bioresource Technology 102, 253-262.

Marcus A., Torres C.I., Rittmann B. (2007). Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnology & Bioengineering 98, 1171-1182.

Park S., Bae W., Chung J., Baek S. (2007). Empirical model of the pH dependence of the maximum specific nitrification rate. Process Biochemical 42, 1671-1676.

Picioreanu C., Loosdrecht M., Curtis T., Scott K. (2010). Bioelectrochemistry Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 78, 8-24.

Picioreanu C., Head I., Katuri K., Van Loosdrecht M., Scott K. (2007). A computational model for biofilm-based microbial fuel cells. Water Research 41, 2921-2940.

Pinto R., Srinivasan B., Manuel M., Tartakovsky B. (2010). A two-population bio-electrochemical model of a microbial fuel cell. Bioresource Technology 101, 5256-65.

Rozendal R., Hamelers H., Buisman C. (2006). Effects of Membrane Cation Transport on pH and Microbial Fuel Performance. Environmental Science & Technology 40, 5206- 5211.

Sanchez-Herrera D., Pacheco-Catalan D., Valdez- Ojeda R., Canto-Canche B., Dom´ınguez Benetton X., Dom´ınguez-Maldonado J., AlzateGaviria L. (2014). Characterization of anode and anolyte community growth and the impact of impedance in a microbial fuel cell. BMC Biotechnology 14, 1-10.

Torres C., Marcus A., Lee H., Parameswaran P., Krajmalnik-Brown R., Rittmann B. (2010). A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews 34, 3-17.

Torres C., Rittmann B.E., Marcus A.K. (2007). Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnology & Bioengineering 98, 1171-1182.

Valdez-Ojeda R., Aguilar-Espinosa M., Gomez- Roque L., Canto-Canche B., Escobedo Gracia- Medrano R.M., Dom´ınguez- Maldonado J., Alzate-Gaviria L. (2014). Genetic identification of the bioanode and biocathode of a microbial electrolysis cell. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 573-581.

Zeng Y., Choo Y.F., Kim B., Wu P. (2010). Modelling and simulation of two-chamber microbial fuel cell. Journal Power Sources 195, 79-89.

Zhang X., Halme A. (1995). Modelling of a microbial fuel cell process. Biotechnology Letters 17, 809-814.
How to Cite
Peraza-Baeza, I., Peréz-Hernández, A., Blanco-Cocom, L., Domínguez-Maldonado, J., & Alzate-Gaviria, L. (2019). A MATHEMATICAL MODEL OF THE OSCILLATIONS OF pH FOR THE ANODIC BIOFILM FORMATION IN A MICROBIAL FUEL CELL. Revista Mexicana De Ingeniería Química, 15(3), 763-771. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1032

Most read articles by the same author(s)