• T. Tovar-Benítez
  • C. Jiménez-Martínez
  • M.J. Perea-Flores
  • D.I. Téllez-Medina
  • G. Dávila-Ortíz
Keywords: bayo bean, protein hydrolysate, Eudragit® L 30 D-55, microcapsules, freeze-drying.


The aim of this study was to obtain microcapsules of a bayo bean protein hydrolysate (BBPH) with antihypertensive activity using Eudragit® L 30 D-55 as wall material (EGLD) through freeze-drying processing. The BBPH was obtained using sequential pepsin-pancreatin enzymatic system. The ACE-I inhibitory activity was measured using tripeptide hippurylhistidyl leucine (HHL) as model peptide. Three microcapsule formulations were prepared containing BBPH and EGLD at ratios of 1:20, 1:4 and 1:1, respectively. The physicochemical characteristics of microcapsules were evaluated by optical (OM) and scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM), dierential scanning calorimetry (DSC), X-ray diraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). ACE-I inhibitory activity of BBPH was IC50=0.42 mg/mL. All microcapsules showed irregular shapes. The BBPH was distributed homogeneously in all formulations. The DSC and XRD analysis revealed a uniform dispersion of the BBPH and partially crystalline structures of EGLD and BBPH. The FT-IR confirmed the chemical stability of BBPH in the microcapsules. In conclusion, the EGLD microcapsules containing BBPH were prepared successfully by freeze-drying processing.


Alaiz, M., Navarro, J. L., Gir´on, J. and Vioque, E. (1992). Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. Journal of Chromatography A 591, 181-186.

AOAC. (1997). In William Horwitz (Ed.), Official Methods of Analysis (17th ed.). Washington, D.C: Association ocial Analytical Chemists. Attama, A. A., Schicke, B. C., and Muller-Goymann, C. C. (2006). Further characterization of theobroma oil beeswax admixtures as lipid matrices for improved drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics 64, 294-306.

Barzegar-Jalali, M., Alaei-Beirami, M., Javadzadeh,Y., Mohammadi, G., Hamidi, A., Andalib, S. et al. (2012). Comparison of physicochemical characteristics and drug release of diclofenac sodium-Eudragit® RS100 nanoparticles and solid dispersions. Powder Technology 219, 211-216.

Betancur-Ancona, D., Gallegos-Tintor´e, S. and Chel-Guerrero, L. (2004). Wet-fractionation of Phaseolus lunatus seeds: partial characterization of starch and protein. Journal of the Science of Food and Agriculture 84, 1193-1201.

Betancur-Ancona, D., Sosa-Espinoza, T., Ruiz-Ruiz, J., Segura-Campos, M. and Chel-Guerrero, L. (2014). Enzymatic hydrolysis of hardto-cook bean (Phaseolus vulgaris L.) protein concentrates and its eects on biological and functional properties. International Journal of Food Science & Technology 49, 2-8.

Boschin, G., Scigliuolo, G.M., Resta, D. and Arnoldi, A. (2014). ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chemistry 145, 34-40.

Ceballos, A.M.A., Giraldo, G.I.S. and Orrego, C.E. (2012). Eect of freezing rate on quality parameters of freeze dried soursop fruit pulp. Journal of Food Engineering 111, 360-365.

Cian, R.l.E., Vioque, J., and Drago, S.R. (2015). Structure mechanism relationship of antioxidant and ACE I inhibitory peptides from wheat gluten hydrolysate fractionated by pH. Food Research International 69, 216-223.

Comunian, T.A., Thomazini, M., Alves, A.J.G.A., de Matos Junior, F.E., de Carvalho Balieiro, J.l.C. and Favaro-Trindade, C.S. (2013). Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International 52, 373-379.

El-Malah, Y. and Nazzal, S. (2008). Novel use of Eudragit® NE 30D/Eudragit® L 30 D-55 blends as functional coating materials in timedelayed drug release applications. International Journal of Pharmaceutics 357, 219-227.

Guzm´an-M´endez, B., Jaramillo-Flores, M.E., Chel-Guerrero, L. and Betancur-Ancona, D. (2014). Comparison of physicochemical properties, antioxidant and metal-chelating activities of protein hydrolysates from Phaseolus lunatus and hard-to-cook Phaseolus vulgaris. International Journal of Food Science & Technology 49, 1859-1868.

Hao, S., Wang, B., Wang, Y., Zhu, L., Wang, B., and Guo, T. (2013). Preparation of Eudragit L 100-55 enteric nanoparticles by a novel emulsion diffusion method. Colloids and Surfaces B: Biointerfaces 108, 127-133.

Hayakari, M., Kondo, Y. and Izumi, H. (1978). A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Analytical Biochemistry 84, 361-369.

Hern´andez-Ledesma, B., Del Mar Contreras, M. and Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science 165, 23-35.

Hwang, J.S. and Ko, W.C. (2004). Angiotensin Iconverting enzyme inhibitory activity of protein hydrolysates from tuna broth. Journal Food Drug Anal 12, 232-237.

Joshi, A.S., Patil, C.C., Shiralashetti, S.S., and Kalyane, N.V. (2013). Design, characterization and evaluation of Eudragit microspheres containing glipizide. Drug Invention Today 5, 229-234.

Meg´ıas, C., Yust, M.d.M., Pedroche, J., Lquari, H., Gir´on-Calle, J., Alaiz, M. et al. (2004). Purification of an ACE Inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. Journal of Agricultural and Food Chemistry 52, 1928-1932.

Molina Ortiz, S.E., Mauri, A., Monterrey- Quintero, E.S., Trindade, M.A., Santana, A.S., and Favaro-Trindade, C.S. (2009). Production and properties of casein hydrolysate microencapsulated by spray drying with soybean protein isolate. LWT-Food Science and Technology 42, 919-923.

Nesterenko, A., Alric, I., Silvestre, F. and Durrieu, V. (2013). Vegetable proteins in microencapsulation: A review of recent interventions and their eectiveness. Industrial Crops and Products 42, 469-479.

Nielsen, P., Petersen, D. and Dammann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science 66, 642-646.

Ondetti, M.A. and Cushman, D.W. (1982). Enzymes of the Renin-Angiotensin System and their inhibitors. Annual Review of Biochemistry 51,283-308.

Pedroche, J., Yust, M.M., Gir´on-Calle, J., Alaiz, M., Mill´an, F. and Vioque, J. (2002). Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. Journal of the Science of Food and Agriculture 82, 960-965.

Ray, S., Raychaudhuri, U. and Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience 13, 76-83.

Regulska, K., Stanisz, B., Regulski, M. and Murias, M. (2014). How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discovery Today 19, 1731-1743.

Ruiz, J.A .G., Ramos, M. and Recio, I. (2004). Angiotensin converting enzymeinhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. International Dairy Journal 14, 1075-1080.

Sansone, F., Picerno, P., Mencherini, T., Villecco, F., D´Ursi, A.M., Aquino, R.P. et al. (2011). Flavonoid microparticles by spray-drying: Influence of enhancers of the dissolution rate on properties and stability. Journal of Food Engineering 103, 188-196.

Segura-Campos, M.R., Chel-Guerrero, L.A. and Betancur-Ancona, D.A. (2010). Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. Journal of the Science of Food and Agriculture 90, 2512-2518.

Torruco-Uco, J., Chel-Guerrero, L., Mart´ınez- Ayala, A., D´avila-Ort´ız, G. and Betancur- Ancona, D. (2009). Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT-Food Science and Technology 42, 1597-1604.

Udenigwe, C.C. and Mohan, A. (2014). Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. Journal of Functional Foods 8, 45-52.

Valdez-Ortiz, A., Fuentes-Guti´errez, C.I., Germ´an-B´aez, L.J., Guti´errez-Dorado, R. and Medina-Godoy, S. (2012). Protein hydrolysates obtained from Azufrado (sulphur yellow) beans (Phaseolus vulgaris): Nutritional, ACEinhibitory and antioxidative characterization. LWT - Food Science and Technology 46, 91-96.

Viveros-Contreras, R.; T´ellez-Medina, D.I.; Perea-Flores, M.J.; Alamilla-Beltr´an, L.; Cornejo- Maz´on, M.; Beristain-Guevara, C. I.; Azuara- Nieto, E.; Guti´errez-L´opez, G.F. (2013). Encapsulation of ascorbic acid into calcium alginate matrices through coacervation coupled to freeze-drying. Revista Mexicana de Ingenier´ıa Qu´ımica 12, 29-39

Xu, J., Li, W., Liu, Z., Li, J., Zhao, X., Li, D. et al. (2015). Preparation, characterization and pharmacokinetics evaluation of clarithromycinloaded Eudragit® L-100 microspheres. European Journal of Drug Metabolism and Pharmacokinetics, 1-7.

Yust, M. M., Pedroche, J., Gir´on-Calle, J., Vioque, J., Mill´an, F. and Alaiz, M. (2004). Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. Food Chemistry 85, 317-320.
How to Cite
Tovar-Benítez, T., Jiménez-Martínez, C., Perea-Flores, M., Téllez-Medina, D., & Dávila-Ortíz, G. (2019). MICROENCAPSULATION OF BAYO BEAN (Phaseolus vulgaris) PROTEIN HYDROLYSATE WITH INHIBITORY ACTIVITY ON ANGIOTENSIN-I CONVERTING ENZYME THROUGH FREEZE-DRYING. Revista Mexicana De Ingeniería Química, 15(3), 797-807. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1038
Food Engineering

Most read articles by the same author(s)

1 2 > >>