• S. Cisneros-de la Cueva Technological Institute of Durango
  • M.A. Martínez-Prado Technological Institute of Durango
  • J. López-Miranda Technological Institute of Durango
  • J.A. Rojas-Contreras Technological Institute of Durango
  • H. Medrano-Roldán Technological Institute of Durango
Keywords: aerobic degradation, TPH contaminated soils, kinetics, mining industry


This study was conducted with a fungal strain isolated from a mining soil contaminated with total petroleum hydrocarbons (TPH) and properly identified by polymerase chain reaction (PCR) technique as Aspergillus terreus KP862582. The biodegradation potential of this pure culture was evaluated at laboratory scale; a wide diesel concentration range, from 10,000 to 50,000 mg diesel/kg soil (ppm), was tested using sterile soil microcosm over a 90-day period. Aerobic biodegradation of diesel by Aspergillus terreus KP862582 was significantly greater (p < 0.05) for 10,000, 20,000, and 30,000 ppm, with rate constant values of 0.025, 0.023, and 0.012 1/day, respectively. Cell viability at these concentrations was favored because it showed a significant increase during the first period of biodegradation (0-30 days), from this time onwards efficiency removal and cell viability decreased considerably. This pattern was observed as concentration of diesel increased, resulting in a much lower biodegradation rate for 40,000 ppm (0.005 1/day) and 50,000 ppm (0.002 1/day). Based on the results of this study it is concluded that the strain of Aspergillus terreus KP862582 can be used in the bioremediation of soils contaminated with petroleum hydrocarbons at concentrations of 10,000 and 20,000 ppm, and comply with the MPL established by the Mexican regulation.


Abbassi, B.E. and Shquirat, W.D. (2008). Kinetics of indigenous isolated bacteria used for Ex-Situ bioremediation of petroleum contaminated soil. Water, Air, and Soil Pollution 192, 221-226.

Abdulsalam, S. (2011). Kinetic study of carbon dioxide (CO2) respiration rate in bioremediation of soil contaminated with spent motor oil. Bioremediation Journal 15, 196-205.

Abdulsalam, S., Bugaje, I.M., Adefila, S.S., and Ibrahim, S. (2011). Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. International Journal of Environmental Science and Technology 8, 187- 194.

Agarry, S.E., Solomon, B.O., and Audu, T.O.K. (2010). Substrate utilization and inhibition kinetics: Batch degradation of phenol by indigenous monoculture of Pseudomonas aeruginosa. International Journal for Biotechnology and Molecular Biology Research 1, 22-30.

Alef, K. and Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Soil Respiration. Academic Press Limited. ISBN:0-12-513840-76.

Alisi, C., Musella, R., Tasso, F., Ubaldi, C., Manzo, S., Cremisini, C., and Sprocati, A.R. (2009). Bioremediation of diesel oil in a cocontaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Science of the Total Environment 407, 3024-3032.

Al-Malack, M.H. (2006). Determination of biokinetic coefficients of an immersed membrane bioreactor. Journal of Membrane Science 271, 47-58.

AI-Jawhari, I.F.H. (2014). Ability of some soil fungi in biodegradation of petroleum hydrocarbon. Journal of Applied and Environmental Microbiology 2, 46-52.

Andersson, E., Rotander, A., von Kronhelm, T., Berggren, A., Ivarsson, P., Hollert, H., and Engwall, M. (2009). AhR agonist and genotoxicant bioavailability in a PAHcontaminated soil undergoing biological treatment. Environmental Science and Pollution Research 16, 521-530.

Atlas, R.M. (1985). Effects of hydrocarbons on microorganisms and petroleum biodegradation in arctic ecosystems. In: Petroleum Effects in the Arctic Environment. (F.R. Engelhardt, eds.), 63-99. Elsevier, London, UK.

BioEdit (2013). Biological Sequence Alignment Editor. Available in: bioedit.html. Accessed: March 6, 2016.

Brook, T.R., Stiver, W.H., and Zytner, R.G. (2001). Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil and Sediment Contamination. An Int. Journal 10, 539-553.

Chaudhry, S., Luhach, J., Sharma V., and Sharma, C. (2012). Assessment of diesel degrading potential of fungal isolates from sludge contaminated soil of petroleum refinery, Haryana. Research Journal of Microbiology 7, 182-190.

Cisneros-de La Cueva, S., Martínez-Prado, M.A., Rojas-Contreras, J.A., Medrano-Roldán, H., and Murillo-Martínez, M.A. (2014). Isolation and characterization of a novel strain, Bacillus sp KJ629314, with a high potential to aerobically degrade diesel. Revista Mexicana de Ingeniería Química 13, 393-403.

Das, N. and Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International 2011, 1-13.

Dhar, K., Dutta, S., and Anwar, M.N. (2014). Biodegradation of petroleum hydrocarbon by indigenous fungi isolated from ship breaking yards of Bangladesh. International Research Journal of Biological Sciences 3, 22-30.

Edwards, V.H. (1970). The influence of high substrate concentrations on microbial kinetics. Biotechnology and Bioengineering Wiley Periodicals, Inc. 12, 679-712.

Etuk, C.U., John, R.C., Ekong, U.E., and Akpan, M.M. (2012). Growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill site in Ibeno, Nigeria. United States Department of Agriculture. Bulletin of Environmental Contamination and Toxicology 89, 727-732.

Floodgate, G. (1984). The fate of petroleum in marine ecosystems. In Petroleum Microbiology, (R.M. Atlas, eds.), 355-398. Macmillion, New York, NY, USA.

Fredricks, D.N., Smith, C., and Meier, A. (2005). Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. Journal of Clinical Microbiology 43, 5122-5128.

Gheyrati, L.A. and Gunale, V.R. (2010). Soil petroleum hydrocarbon bioremediation by fungi consortium. Scientific Information Database. Environmental Sciences 7, 23-36.

Guiraud, P., Villemain, D., Kadri, M., Bordjiba, O., and Steiman, R. (2003). Biodegradation capability of Absidia fusca Linnemann towards environmental pollutants. Chemosphere 52, 663-671.

Hollaway, S.L., Faw, G.M., and Sizemore, R.K. (1980). The bacterial community composition of an active oil field in the Northwestern Gulf of Mexico. Marine Pollution Bulletin 11, 153-156.

Hui, L.I., Zhang, Y., Kravchenko, I., Hui, X.U., and Zhang, C. (2006). Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: A laboratory experiment. Journal of Environmental Sciences 19, 1003-1013.

Jones, J., Knight, M., and Byron, J.A. (1970). Effect of gross population by kerosene hydrocarbons on the microflora of a moorland soil. Nature 227, 1166.

Kumar, A., Kumar, S., and Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal 22, 151-159.

Kruger, D., Sharma, M., and Varma, A. (2009). ¨ Assessing the mycorrhizal diversity of soils and identification of fungus fruiting bodies and axenic cultures. Soil Biology. Symbiotic Fungi: Principles and Practice. Volume 18, 159-188. Springer ISBN: 978-3-540-95893-2.

Lee, M., Kim, M.K., Singleton, I., Goodfellow, M., and Lee, S.T. (2006). Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. Journal of Applied Microbiology 100, 325- 333.

Lemos, J.L.S., Rizzo, C.L.A., Millioli, V.S., Soriano, U.A., Sarquis, M.I.M., and Santos dos, R. (2002). Petoleum degradation by filamentous fungi. In: 9 th Annual International Petroleum Conference, October 21-25, New Mexico, USA

Martínez-Prado, M.A., Unzueta-Medina, J., and Pérez-López, M.E. (2014). Electrobioremediation as a hybrid technology to treat soil contaminated with Total Petroleum Hydrocarbons. Revista Mexicana de Ingeniería Química 13, 127-141.

Martosi, A. (2012). The Enzymes of Biological Membranes: Membrane Transport. Springer Science and Business Media. Plenum Press, New York and London. Volume 3, 459.

May, L.A., Smiley, B., and Schmidt, M.G. (2001). Comparative denaturing gradient gel electrophoresis of fungal communities associated with whole plant corn silage. Can. J. Microbiol 47, 829-841. In: Molecular Identification of Fungi, (Youssuf Gherb & Kerstin Voigt, eds.). Springer.

McIntosh, T.J., Simon, S.A., and MacDonald, R.C. (1980). The organization of n-alkanes in lipid bilayers. Biochimica et Biophysica ActaBiomembranes 597, 445-463.

Medina-Moreno, S.A., Jiménez-González, A., Gutiérrez-Rojas, M., and Lizardi-Jiménez, M.A. (2014). Hydrocarbon pollution studies of underwater sinkholes along Quintana Roo as a function of tourism development in the Mexican Caribbean. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 509-516.

NCBI (2015). National Center for Biotechnology Information. BLAST Assembled Genomes. Available in: Accessed: March 6, 2016.

SEMARNAT (2003). Secretar´ıa de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-138-SEMARNAT/SS-2003. L´ımites maximos permisibles de hidrocarburos ´ en suelos y las especificaciones para su caracterizacion y remediaci ´ on. Diario oficial ´ de la Federacion. 29 de Marzo de 2005.

Odriosolla, E., Centeno, C.F., Tavares, C., Ladeire, A.V., Fernandes, J., Kalil, S.J., and Veiga, C.A. (2008). Pre-screening of filamentous fungi isolated from a contaminated site in Southern Brazil for bioaugmentation purposes. African Journal of Biotechnology 7, 1314-1317.

Omstead, D.R. (1989). Computer Control of Fermentation Processes. Published by CRC Press. ISBN 10: 084935496X / ISBN 13: 9780849354960

Patil, T.D., Pawar, S., Kamble, P.N., and Thakare, S.V. (2012). Bioremediation of complex hydrocarbons using microbial consortium isolated from diesel oil polluted soil. Der Chemica Sinica 3, 953-958.

Peled, O.N., Salvadori, A., Peled, U.N., and Kidby, D.K. (1977). Death of microbial cells: Rate constant calculations. Journal of Bacteriology 129, 1648-1650.

Pinedo-Rivilla, C., Aleu, J., and Collado, I.G. (2009). Pollutants biodegradation by fungi. Current Organic Chemistry 13, 1194-1214.

Pinholt, Y., Struwe, S., and Kjoller, A. (1979). Microbial changes during oil decomposition in soil. Holarctic Ecology 2, 195-200.

Raimbault, M. and Alazard, D. (1980). Culture method to study fungal growth in solid fermentation. European Journal of Applied Microbiology and Biotechnology 9, 199-209.

Roussos, S. and Perraud-Gaime, I. (1996). Fisiología y bioquímica de microorganismos utilizados en procesos de fermentación en medio solido. Sociedad Mexicana de Biotecnología y Bioingeniería, A. C. En Fronteras en Biotecnología y Bioingeniería, 341-348.

Sikkema, J., De Bont, J.A.M., and Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbial Reviews 59, 201-222.

Singh, R.K., Kumar, S., Kumar, S., and Kumar, A. (2008). Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochemical Engineering Journal 40, 293-303.

Suarez, M.P. and Rifai, H.S. (2010). Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremediation Journal 8, 37-41.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725- 2729.

Thijsse, G.J.E. and van der Linden, A.C. (1961). Iso-alkane oxidation by a Pseudomonas part I. Metabolism of 2-methylhexane. Antonie van Leeuwenhoek 27, 171-179.

US EPA (1995). United States Environmental Protection Agency. EPA 821-B-94- 004. Method 1664: n-hexane extractable material and silica gel. Treated n-hexane extractable material (SGT-HEM) by extraction and gravimetry (oil and grease and total petroleum hydrocarbons). Available in: 1664 OandG. pdf. Accessed: March 6, 2016.

US EPA (1996). United States Environmental Protection Agency. Method 3540C. Soxhlet extraction, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Available in: Accessed: March 6, 2016.

Vanishree, M., Thatheyus, A.J., and Ramya, D. (2014). Biodegradation of petrol using Aspergillus sp. Annual Research and Review in Biology 4, 914-923.

Volke-Sepulveda, T., Gutierrez-Rojas, M., and ´ Favela-Torres, E. (2006). Biodegradation of high concentrations of hexadecane by Aspergillus niger in a solid-state system: Kinetic analysis. Bioresource Technology 97, 1583-1591.

White, S.H., King G.I., and Cain, J.E. (1981). Location of hexane in lipid bilayers determined by neutron diffraction. Nature 290, 161-163.

White, T.J., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, (M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White, eds), Pp. 315-322. Academic Press, New York, USA.

Yang, S.Z., Jin, H.J., Wei, Z., He, R.X., Ji, Y.J., Li, X.M., and Yu, S.P. (2009). Bioremediation of oil spills in cold environments: A Review. Pedosphere 19, 371-381.

Yeates, C., Gillings, M.R., Davison, A.D., Altavilla, N., and Veal, D.A. (1998). Methods for microbial DNA extraction from soil for PCR amplification. National Center for Biotechnology Information. Biological Procedures Online 1, 40-47.

Zafra, G., Absalón, A.E., and Cortés-Espinosa, D.V. (2015). Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Brazilian Journal of Microbiology 46, 937-941.

Zanaroli, G., Di Toro, S., Todaro, D., Varese, G.C., Bertolotto, A., and Fava, F. (2010). Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microbial Cell Factories 9-10.
How to Cite
Cisneros-de la Cueva, S., Martínez-Prado, M., López-Miranda, J., Rojas-Contreras, J., & Medrano-Roldán, H. (2019). AEROBIC DEGRADATION OF DIESEL BY A PURE CULTURE OF Aspergillus terreus KP862582. Revista Mexicana De Ingeniería Química, 15(2), 347-360. Retrieved from

Most read articles by the same author(s)