• J.C. Robles-Heredia Autonomus University of Carmen
  • J.C. Sacramento-Rivero Autonomus University of Yucatan
  • A. Ruiz-Marín Autonomus University of Carmen
  • S. Baz-Rodríguez Autonomus University of Yucatan
  • Y. Canedo-López Autonomus University of Carmen
  • A. Narváez-García Autonomus University of Carmen
Keywords: shear rate, aireation rate, photobioreactors


In this work the effect of the hydrodynamic conditions to different aeration rate (1.4, 1.8, and 2.4 vvm) and two internally lit, annular FBR geometries (airlift and bubble column) on cell growth, nitrogen removal and lipid production of Chlorella vulgaris were evaluted. A two-step nitrogen reduction cultivation mode was used for promoting lipid accumulation. The inoculum was cultivated at an initial concentration of 90 mg L−1 N-NH+4 (nitrogen sufficiency) and at the end of the exponential phase it was fed to 11 L FBR at a sufficient dilution to start with 20 mgL−1 of N-NH+4 (nitrogen reduction). The results showed that at similar aeration rates, very different hydrodynamic regimes were attained in each FBR, being more turbulent in the airlift geometry. However, the degree of stirring and mixing did not cause cell damage or photoinhibition. Celular growth of up to 12×106 cells mL−1 were observed, nitrogen consumption was always between 16 and 19%, and calculated shear rates were in the range of 120-340 s−1. The major lipid productivity was reached at 1.8 vvm (0.650 and 0.528) mg·L−1 d −1 in annular bubble column and airlift geometries, respectively.


Bligh, E.G. y Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 8, 911- 917.

Brill, J. P. y Mukherjee H. (1999). Multiphase Flow in Wells, Society of Petroleum Engineers. No. 17.

Cerri, M.O., Futiwaki, L., Jesus, C.D.F., Cruz, A.J.G. y Badino, A.C. (2008). Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor. Biochemical Engineering Journal 39, 51-57.

Chisti, Yusuf. (1989). Air Lift Bioreactors. New York: Elsevier Applied Science.

Chiu, S., Kao, C., Tsai, M., Ong, S., Chen, C., y Lin, C. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology 100, 833-838.

Chiu, S., Kao, C., Chen, C., Kuan, T., Ong, S. y Lin, C. (2008). Reduction of CO2 by a high density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology 99, 3389-3396.

Doran, P.M. (1995). Bioprocess Engineering Principles. Academic Press Limited, London.

Gouveia, L. y Oliveira, A.C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology 36, 269-74.

Fernández, L., L.C., Montiel, M.J., Millán, O.P. (2012). Producción de Biocombustibles a partir de Microalgas. Ra Ximhai 101-115. ISSN: 1665-0441.

Griffiths, M.J., Hille, R.P. y Harrison, S.T. L. (2012). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applied Phycology 24, 998-1001.

Grobbelaar, J.U. (2010). Microalgal biomass production: challenges and realities. Photosynthesis Research 106, 135-134.

Guillard, R.L.L and Ryther, J.H. (1962). Studies on marine planktonic diatoms I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve). Gran. Canadian Journal of Microbiology 8, 229-239.

Hincapie, E. (2010). Design, construction and validation of an internally-lift airlift FBR. A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In Partial fulfillment of the requirements for the degree Master of Science.

Li, Q., Du, W. y Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology Biotechnology 80, 749-756.

Martínez, G., L. (2011). Eliminación de CO2 con microalgas autoctonas. Tesis presentada para obtención del grado de doctor, Universidad de León. España.

Mata, T. M., Martins, A. A. y Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14, 217-232.

Mazzuca-Sobczuka, T., Chisti, Y. (2010). Potential fuel oils from the microalga Choricystis minor. Journal of Chemical Technology and Biotechnology 85, 100-108.

Monkonsit, S., Powtongsook, S., y Pavasant, P. (2011). Comparison between airlift Photobioreactor and Bubble Column for Skeletonema costatum cultivation. Engineering Journal 15, ISSN 0125-8281.

Mujtaba, G., Choi, W., Lee, C. y Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology 123, 279- 283.

Natsume, T. y Yoshimoto, M. (2013). A method to estimate the average shear rate in a bubble column using liposomes. Industrial and Engineering Chemistry Research 52, 18498- 18502.

Robles-Heredia, J.C., Sacramento-Rivero J.C., Canedo-López, Y., Ruiz-Marín, A. y Vilchiz-Bravo, L.E. (2015). A multistage gradual nitrogen-reduction strategy for increased lipid productivity and nitrogen removal in wastewater using Chlorella vulgaris and Scenedesmus obliquus. Brazilian Journal of Chemical Engineering 32, 335-345.

Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. y Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102, 100- 112.

Romero, L.T. y Ferrán C. (2001). Floculación de Chlorella sp. con la utilización de quitosano. Revista de Investigaciones Marinas 22, 57-62.

Ruiz-Marin, Alejandro, Mendoza-Espinosa, Leopoldo G. y Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semicontinuous cultures treating real wastewater. Bioresource Technology 101, 58-64.

Salazar-Leyva, J.A., Lizardi-Mendoza, J., Ramírez-Suarez, J. C., García-Sánchez, G., Ezquerra-Brauer, J.M., Valenzuela-Soto, E.M., Carvallo-Ruiz, M.G., Lugo-Sánchez, M.E. y Pacheco-Aguilar, R.. (2014). Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: efectos en su estabilización y aplicaciones. Revista Mexicana de Ingeniería Química 13, 129-150.

Scragg, A.H., Illman, A.M., Carden, A. y Shales, S.W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy 29, 67-73.

Sheehan, J., Dunahay, T., Benemann, J. y Roessler, P. (1998). A Look Back at the U.S. Department of Energy’s Aquatic Species Program-Biodiesel from Algae. NREL/TP-580-24190.

Solovchenco, A.E., Khozin-Goldberg, I., DidiCohen, S., Cohen, Z. y Merzlyak, M.N. (2008). Efects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. Journal of Applied Phycology 20 245?251.

Soto-León, S., Zazueta-Patrón, I. E., Piña-Valdez, P., Nieves-Soto, M., Reyes-Moreno, C. y Contreras-Andrade, I. (2014). Extracción de lípidos de Tetraselmis suecica: Proceso asistido por ultrasonido y solventes. Revista Mexicana de Ingeniería Química 13, 723-737.

STATISTICA V7 (data analysis software system), version 7 (StatSoft, Inc., 2004).

Takagi, M., Watanabe, K., Yamaberi, K. y Yoshida, T. (2000). Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Applied Microbiology and Biotechnology 54, 112-117.

Ugwu, C.U., Aoyagi, H. y Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology 99, 4021-4028.

Widjaja, A., Chien, C. y Ju, Y. (2009).Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers 40, 13- 20.

Xin, L, Hong-ying, H, Ke, G. y Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101, 5494- 5500.

Xu, H. Miao, X. y Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology 126, 499- 507.
How to Cite
Robles-Heredia, J., Sacramento-Rivero, J., Ruiz-Marín, A., Baz-Rodríguez, S., Canedo-López, Y., & Narváez-García, A. (2019). EVALUATION OF CELL GROWTH, NITROGEN REMOVAL AND LIPID PRODUCTION BY CHLORELLA VULGARIS TO DIFFERENT CONDITIONS OF AIREATION IN TWO TYPES OF ANNULAR PHOTOBIOREACTORS. Revista Mexicana De Ingeniería Química, 15(2), 361-377. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1045