EFFECT OF SURFACTANT IN THE SYNTHESIS OF CoMo/Al2O3 CATALYSTS OBTAINED BY REVERSE MICROEMULSION FOR DIBENZOTHIOPHENE HYDRODESULFURIZATION

  • J.L. Munguía-Guillén Universidad Autónoma Metropolitana-Iztapalapa.
  • E.J. Vernon-Carter
  • J.A. De los Reyes-Heredia Universidad Autónoma Metropolitana-Iztapalapa.
  • T. Viveros-García
Keywords: microemulsion, CTAB and SDS surfactants, CoMo/Al2O3 catalyst, hydrodesulfurization

Abstract

Two series of microemulsions, water/1- butanol/surfactant (five samples per series) were studied; one series was prepared with cetyltrimethylammonium bromide (CTAB, cationic) and another with sodium dodecyl sulfate (SDS, anionic). For both series of microemulsions the effect of the type of surfactant on: the water in oil ratio; droplet size; amount of surfactant required and stability of the microemulsions was studied. The microemulsions employing SDS form larger drops, although require lower amount of surfactant. Microemulsions formed were stable for up to thirty days. Two CoMo/Al2O3 catalysts with the same metal composition were prepared using either surfactant, and were used in the hydrodesulfurization of dibenzothiophene. The catalyst prepared with CTAB presented a greater surface area and catalytic activity, than that prepared with SDS in the microemulsions. Product distribution in HDS followed the trend biphenyl > cyclohexylbenzene > bicyclohexyl for both catalysts suggesting the direct desulfurization route. The study suggests that the layer formed by the surfactant and organic agent, around the micelles, plays a role that determines the properties of the catalyst. The results allowed to suggest the mechanism of formation of the catalyst prepared by reverse microemulsion using CTAB as surfactant

References

Ayyub, P., Maitra, A., & Oshah, D. O. (1993). Microstructure of the CTAB-Butanol-Octane- Water microemulsi´on system: effect of disolved salts. Journal of the Chemical Society, Faraday Transactions 89, 3585-3589.

Bataille , F., Lemberton, J. L., P´erot, G., Lyrit, P., Cseri, T., Marchal, N., & Kasztelan, S. (2001). Sulfided Mo and CoMo supported on zeolite as hydrodesulfurization catalysts: transformation of dibenzothiophene and 4,6- dimethyldibenzothiophene. Applied Catalysis A: General, 220, 191-205.

Bergwer F, J. A., Visser, T., & Weckhuysen, B. M. (2008). On the interaction between Coand Mo-complexes in impregnation solutions used for the preparation of Al2O3-supported HDS catalysts: A combined Raman/UV-vis- NIR spectroscopy study. Catalysis Today 130, 117-125.

Cavazos-Gardu˜no, A., Ochoa Florez, A. A., Serrano- Ni˜no, J. C., Beristain, C. I., & Garc´ıa, H. S. (2014). Operating and compositional variables for preparation of betulinic acid nanoemulsions. Revista Mexicana de Ingeniería Química 13, 689-703.

Choi, K.-H., Korai, Y., & Mochida , I. (2004). Preparation and characterization of nano-sized CoMo/Al2O3 catalyst for hydrodesulfurization. Applied Catalysis A: General 260, 229-236.

Choi, K.-H., Kunisada, N., Korai, Y., Mochida, I., & Nakano, K. (2003). Facile ultra-deep desulfurization of gas oil through two-stage or -layer catalyst bed. Catalysis Today 86, 277-286.

Eriksson, S., Nylen, U., Rojas , S., & Boutonnet, M. (2004). Preparation of catalysts from microemulsions and their applications in heterogenous catalysis. Applied Catalysis 265, 207-219.

Escobar, J., Toledo, J. A., Cortés, M. A., Mosqueira, M. L., Pérez, V., Ferrat, G., Torres-García, E. (2005). Highly active sulfided CoMo catalysts on nano-structured TiO2. Catalysis Today 106, 222-226.

Feng, Z., Yukou, D., Ping, Y., Xingchang, L., & Jian, T. (2005). Adsorption behavior of hexadecyltrimethylammonium bromide (CTAB) to mica substrates as observed by atomic force microscopy. Science in China Series B Chemistry 48, 101-106.

Flores-Miranda, G. A., Valencia del Toro , G., & Yá˜nez-Fernández, J. (2015). Stability evaluation of -carotene nanoemulsions prepared by homogenization-emulsification process using stearic acid as oil phase. Revista Mexicana de Ingeniería Química 14, 667-680.

Guveli, D. E., Kayes, J. B., & Davis, S. S. (1979). Hydrodynamic studies of micellar systems of alkyltrimethylammonium bromides and the effect of added 1-alkanols. Journal of Colloid and Interface Science 72, 130-139.

Haruta, M., Lemaitre, J., Delannay, F., & Delmon, B. (1984). Preparation and properties of colloidal spherical particles of molybdenum and cobalt sulfides. Journal of Colloid and Interface Science 101, 59-71.

Houalla, M., Broderick, D. H., Sapre, A. V., Nag, N. K., de Beer, D. H., Gates, B. C., & Kwart, H. (1980). Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/Al2O3. Journal of Catalysis 61, 523-527.

Inamura, K., Uchikawa, K., Matsuda, S., & Akai , Y. (1997). Preparation of active HDS catalysts by controlling the dispersion of active species. Applied Surface Science 121-122, 468-475.

Kumar, D., Seth, K., Kommi, D. N., Bhagat, S., & Asit, K. C. (2013). Surfactant micelles as microreactors for the synthesis of quinoxalines in water: scope and limitations of surfactant catalysis. RSC Advances 3, 15157-15168.

Li, X., & Kunieda, H. (2003). Catanionic surfactants: microemulsion formation and solubilization. Current Opinion in Colloid and Interface Science 8, 327-336.

Li, X., Lin, E., Zhao, G., & Xiao, T. (1996). Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide. Journal of Colloid and Interface Science 184, 20-30.

Mathew, D. S., & Juang, R.-S. (2007). Role of alcohols in the formation of inverse microemulsions and back extraction of proteins/enzymes in a reverse micellar system. Separation and Purification Technology 53, 199-215.

Papadopoulou, C., Vakros, J., Matralis, H. K., Voyiatzis, G. A., & Kordulis, C. (2004). Preparation, characterization, and catalytic activity of CoMo/ -Al2O3 catalysts prepared by equilibrium deposition filtration and conventional impregnation techniques. Journal of Colloid and Interface Science 274, 159-166.

Parida , K. M., Pradhan, A. C., & Sahu, N. (2009). Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Materials Chemistry and Physics 113, 244-248.

Parida , K. M., Pradhan, A. C., & Sahu, N. (2009). Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Materials Chemistry and Physics 13, 244-248.

Patist, A., Axelberd, T., & Shah, D. O. (1998). Effect of long chain alcohol son micellar relaxation time and foaming properties of sodium dodecyl sulfate solutions. Journal of Colloid and Interface Science 208, 259-265.

Paul, B. K., & Moulik, S. P. (2000). The viscosity behaviours of microemulsions: an overview. PINSA 5, 499-519.

Pérez De la Rosa, M., Texier, S., Berhault, G., Camacho, A., Yacamán, M. J., Mehta, A., Chianelli, R. R. (2004). Structural studies of catalytically stabilized model and industrialsupported hydrodesulfurization catalysts. Journal of Catalysis 225, 288-299.

Pileni, M.-P. (2003). The role of softcolloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials 2, 145-150.

Reardon, J., Datye, A. K., & Sault, A. G. (1998). Taioloring Alumina Surface Chemistry for Efficient Use of Supported MoS2. Journal of Catalysis 173, 145-156.

Samakande, A., Chaghi, R., Derrien, G., Charnay, C., & Hartmann, P. C. (2008). Aqueous behaviour of cationic surfactants containing a cleavable group. Journal of Colloid Interface Science 320,315-320.

Scott, C. E., Pérez-Zurita, M. J., Carbognani, L. A., Molero, H., Vitale, G., Guzmán, H. J., & Pereira-Almao, P. (2015). Preparation of NiMoS nanoparticles for hydrotreating. Catalysis Today 250, 21-27.

Shafiq Ullah, A. K. (2007). SANS analysis on CTAB (cetyltrimethyl ammonium bromide micellar solution). BRAC University Journal 4, 59-62.

Shiao, S. Y., Patist, A., Free, M. L., Chhabra, V., Huibers, P. D., Gregory, A., Shah, D. O. (1997). The importance of sub-angstrom distances in mixed surfactant systems for technological processes. Colloids and Surfaces 128, 197-208.

Sicard, L., Lebeau, B., Patarin, J., & Kolenda, F. (2003). Synthesis of mesostructured or mesoporous aluminas in the presence of surfactants. Comprehension of the mechanisms of formation. Oil & Gas Science and Technology 58, 557-569.

Sidim, T., & Acar, G. (2013). Alcohols effect on Critic Micelle Concentration of Polysorbate 20 and Cetyl Trimethyl Ammonium Bromine Mixed Solutions. Journal of Surfactants and Detergents, 16(4), 601-607.

Silas, J. A., & Kaler, E. W. (2001). Effect of Dodecyldimethylammonium Bromide on the Phase Behavior of nonionic surfactant-silicone oil microemulsions. Langmuir 17, 4534-4539.

Soukup, K., Proch´azka, M., & Kaluza, L. (2015). Microsturctural Properties and HDS Activity of CoMo Catalysts Supported on Activated Carbon Al2O3, ZrO2, TiO2. Chemical Engineering Transactions 43, 841-846.

Spanos, N., Vordonis, L., Kordulis, C., & Lycourghiotis, A. (1990). Molybdenum-oxo species deposited on alumina by adsorption. Journal of Catalysis 124, 310-314.

Topsoe, H., Clausen, B. S., & Massoth, F. E. (1996). Hydrotreating catalysis. Fuel Science and Technology International 14(10).

Topsoe, H., Clausen, B. S., Candia, R., Wivel, C., & Morup, S. (1981). In situ M¨ossbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: Evidence for and nature of a CoMoS phase. Journal of Catalysis 68, 433-452.

Vahidshad, Y., Abdizadeh, H., Baseri, M. A., & Baharvandi, H. R. (2010). Size-controlled synthesis of CuO-ZrO2 nanoparticles prepared through reverse micelle method. Journal of Sol-Gel Science and Technology 53, 263-271.

Vakros, J., Papadopoulou, C., Voyiatzis, G. A., Lycourghiotis, A., & Kordulis, C. (2007). Modification of the preparation procedure for increasing the hydrodesulfurisation activity of the CoMo/Al2O3 catalysts. Catalysis Today 127, 85-91.

Wang, L., & Hall, W. K. (1982). The preparation and genesis of molybdena-alumina and related catalyst systems. Journal of Catalysis 77, 232-241.

Wu, M.-L., Chen, D.-H., & Huang, T.-C. (2001). Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17, 3877-3883.

Xin, Z., Feng, Z., & Kwong-Yu, C. (2004). The synthesis of large mesopores alumina by microemulsion templating, their characterization and properties as catalyst support. Materials Letters 58, 2872-2877.

Zakharova, L., Valeeva, F., Zakharov, A., Ibragimova, A., Kudryavtseva, L., & Harlampidi, H. (2003). Micellization and catalytic activity of the cetyltrimethylammonium bromide-Brij 97-water mixed micellar system. Journal of Colloid and Interface Science 263, 597-605.
Published
2019-12-11
How to Cite
Munguía-Guillén, J., Vernon-Carter, E., De los Reyes-Heredia, J., & Viveros-García, T. (2019). EFFECT OF SURFACTANT IN THE SYNTHESIS OF CoMo/Al2O3 CATALYSTS OBTAINED BY REVERSE MICROEMULSION FOR DIBENZOTHIOPHENE HYDRODESULFURIZATION. Revista Mexicana De Ingeniería Química, 15(3), 893-902. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1075
Section
Catalysis, kinetics and reactors

Most read articles by the same author(s)