• K.B. Sánchez-Sánchez Instituto Tecnológico de Orizaba-TecN
  • E. Bolaños-Reynoso Instituto Tecnológico de Orizaba-TecNM.
  • G.R. Urrea-García Instituto Tecnológico de Orizaba-TecNM
Keywords: batch crystallization, MSZW approach, cane sugar, crystallization kinetics, fractional feeding


(MSZW) and crystallization kinetics. An approach of fractional feeding was used in a cane sugar batch crystallizer at pilotscale plant, operating condition imposed in the cane sugar industrial crystallization. The MSZW was used as a strategy to limit the concentration within the saturation and metastable curves. It was coupled with a detailed analysis for primary nucleation and crystal growth, based on mechanistic kinetic models. The more effcient strategy for the fractional feeding increase D(4,3) to 1089.51µm avoiding losses of FCM (4,700.98 gr) at final process time of 90 min.


Aamir, E., Nagy, Z. K., Rielly, C. D. (2010). Evaluation of the eect of seed preparation method on the product crystal size distributionfor batch cooling crystallization processes. Crystal Growth Design 1, 4728-4740.

Akrap, M., Kuzmanic, N., Kardum, P. J. (2010). Effect of mixing on the crystal size distribution of borax decahydrate in batch cooling crystallizer. Journal of Crystal Growth 312, 3603-3608.

Bezanson, J., Edelman, A., Karpinski, S., Shah, V. B. (2015) Julia: A fresh approach to numerical computing. arXiv:1411.1607v4.

Binev, D., Seidel-Morgenstern, A., Lorenz, H. (2015). Study of crystal size distributions in a fluidized bed crystallizer. Chemical Engineering Science 133, 116-124.

Bolaños, R. E., Sánchez, S. K. B., Urrea, G. G. R., Ricardez, S. L. A. (2014). Dynamic modeling and optimization of batch crystallization of sugar cane under uncertainty. Industrial and Engineering Chemistry Research 53, 13180- 13194.

Bolaños, R. E. (2000). Control and optimization of operating conditions from cooling batch crystallizers. Ph. D. Thesis. I.T. de Celaya, México.

Bolaños, R. E., Xaca, X. O., Álvarez, R. J., López, Z. L. (2008). Effect analysis from dynamic regulation of vacuum pressure in an adiabatic batch crystallizer using data and image acquisition. Industrial and Engineering Chemistry Research 47, 9426-9436.

Braatz, D. R. (2002). Advanced control of crystallization processes. Annual Reviews in Control 26, 87-99.

Braatz, D. R., Hasebe, S. (2002). Particle size and shape control in crystallization processes. In AIChE Symposium Series: Proceedings of the 6th International Conference on Chemical Process Control. 307-327.

Chen, C. P. J. (2000). Cane Sugar Handbook: A Manual for Cane Sugar Manufacturers and Their Chemists. Noriega LIMUSA. Chianese, A., Kramer, M. J. H. (2012). Industrial Crystallization Process Monitoring and Control. WILEY-VCH.

Choong, K. L., Smith, R. (2004). Novel strategies for optimization of batch, semi-batch and heating/cooling evaporative crystallization. Chemical Engineering Science 59, 329-343.

Córdova P. N. M. (2004). Determination of the seed conditions to maximize the growth of particles obtained by batch cooling crystallization. Master Thesis, Instituto Tecnológico de Orizaba. Orizaba, Veracruz, México.

Damour, C., Benne, M., Boillereaux, L., Grondin-Pérez, B., Chabriat, J. P. (2011). Multivariable linearizing control of an industrial sugar crystallization process. Journal of Process Control 21, 46-54.

Fujiwara, M., Nagy, Z. K., Chew, J. W., Braatz, R. D. (2005). First- principles and direct design approaches for the control of pharmaceutical crystallization. Journal of Process Control 15, 493-504.

Georgieva, P., Meireles, M. J., Feyo de Azevedo, S. (2003). Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena. Chemical Engineering Science 58, 3699-3713.

Gerstlauer, A., Motz, S., Mitrovi´c, A., Gilles, E. D. (2002). Development, analysis and validation of population models for continuous and batch crystallizers. Chemical Engineering Science 57, 4311-4327.

Hanks, J. (1997). Counting Particles of Cells using IMAQ Vision; Application Note 107; National Instruments, Inc.: Austin, TX.

Harrop, K. L., Spanfelne, W. H., Jahoda, M., Otomo, N., Etchelles, A. W., Bujalski, W., Nienow, A. W. (1997). Impact of suspended solids on the homogenisation of the liquid phase under turbulent conditions in a stirred vessel. Recents Progress an Genie des Procedes 11, 41-48.

Hermanto, M.W., Chiu, M.S., Woo, X.Y., Braatz, R. D. (2007). Robust optimal control of polymorphic transformation in batch crystallization. AIChE Journal 53, 2643-2650.

Hojjati, H., Sheikhzadeh, M., Rohani S. (2013). Control of supersaturation in a semibatch antisolvent crystallization process using a fuzzy logic controller. Industrial and Engineering Chemistry Research 46, 1232-1240.

Hu, Q., Rohani, S., Jutan, A. (2005). Modelling and optimization of seeded batch crystallizers. Computers and Chemical Engineering 29, 911- 918.

Ka´cuni´c, A., Akrap, M., Kuzmani´c, N. (2013). Effect of impeller type and position in a batch cooling crystallizer on the growth of borax decahydrate crystals. Chemical Engineering Research and Design 91, 274-285.

Kalbasenka, A., Huesman, A., Kramer, H. (2011). Modeling batch crystallization processes: Assumption verification and improvement of the parameter estimation quality through empirical experiment design. Chemical Engineering Science 66, 4867-4877.

Kalbasenka, A., Huesman, A., Kramer, H. (2004). Impeller frequency as a process actuator in suspension crystallization of inorganic salts from aqueous solutions. In: 11th International Workshop on Industrial Crystallization. 135-143.

Khaddour, A. I., Bento, M. S. L., Ferreira, A. M. A., Rocha, N. A. F. (2010). Kinetics and thermodynamics of sucrose crystallization from pure solution at dierent initial supersaturations. Surface Science 604, 1208- 1214.

Kim, D. Y.; Yang, D. R. (2013). A novel method for measurement of crystal growth rate. Journal Crystal Growth 373, 54-58.

Kim, Y. H., Lee, K., Koo, K. K., Shul, Y. G., Haam, S. (2002). Comparison study of mixing effect on batch cooling crystallization of 3-Nitro-1,2,4- triazol-5-one (NTO) using mechanical stirrer and ultrasound irradiation. Crystal Research Technology 37, 928-944.

Madras, G., McCoy, B. J. (2007). A fragmentation model for crystal attrition. Journal of Crystal Growth 305, 211-217.

Mersmann, A. (2001). Crystallization Technology Handbook. M. Dekker, Ed. Second Edition. New York, USA.

Mersmann, A., Braun, B., Löelmann, M. (2002). Prediction of crystallization coeffcients of the population balance. Chemical Engineering Science 57, 4267-4275.

Mesbah, A., Landlust, J., Versteeg, C., Huesman, A. E. M., Kramer, H. J. M., Ludlage, J. H. A, Van den Hof, P. M. J. (2010). Model-based optimal control of industrial batch crystallizers. Proceedings of the 20th European Symposium on Computer Aided Process Engineering; Elsevier B.V. 1563-1568.

Mesbah, A., Landlust, J., Huesman, A. E. M., Kramer, H. J. M., Jansen, P. J., Van den Hof, P. M. J. (2010). A model-based control framework for industrial batch crystallization processes. Chemical Engineering Research and Design 88, 1223-1233.

Mesbah, A., Nagy, Z. K., Huesman, M. E., Kramer, H. J. K., Van den Hof, J. M. P. (2012). Nonlinear model-based control of a semi-industrial batch crystallizer using a population balance modeling framework. IEEE Transactions of Control Systems Technology 20, 1188-1201.

Mitchell, A. N., Ó Ciardhá T. Cliord., Frawley, J. P. (2011). Estimation of the growth kinetics for the cooling crystallization of paracetamol and ethanol solutions. Journal of Crystal Growth 328, 39-49.

Myronchuk, V., Yeshchenko, O., Samilyk, M. (2013). Sucrose cooling crystallization modelling. Journal of Faculty of Food Engineering 12, 109-114.

Nagy, Z. K. (2009). Model based robust control approach for batch crystallization product design. Computers and Chemical Engineering 33, 1685-1691.

Nagy, Z., Aamir, E. (2012). Systematic design of supersaturation controlled crystallization processes for shaping the crystal size distribution using an analytical estimator. Chemical Engineering Science 84, 656-670.

Nagy, Z. K., Fujiwara, M., Braatz, R.D. (2008). Modelling and control of combined cooling and antisolvent crystallization processes. Journal of Process Control 18, 856-864.

Ni, X., Liao, A. (2010). Effects of mixing, seeding, material of baes and final temperature on solution crystallization of L-glutamic acid in an oscillatory baed crystallizer. Chemical Engineering Journal 156, 226-233.

Qamar, S., Hussain, Iltaf., Seidel-Morgenstern, A. (2011). Application of discontinuous Galerkin scheme to batch crystallization models. Industrial and Engineering Chemistry Research 50, 4113-4122.

Quintana-Hernández, P., Bolaños-Reynoso, E., Miranda, C.B., Salcedo, E. L. (2004) Mathematical modeling and kinetic parameter estimation in batch crystallization. AIChE Journal 50, 1407-1417.

Quintana-Hernández, P. A., Díaz-Pérez G., Rico- Ramírez V., Salcedo-Estrada, L. I. (2016). Metastable zone width measurement of adipic acid-water solutions. Revista Mexicana de Ingeniería Química 15, 1009-1018.

Quintana-Hern´andez, P. A., Moncada-Abaunza, D. A., Bolaños-Reynoso, E., Salcedo-Estrada, L. I. (2005). Evaluation of sugar crystal growth and determination of surface shape factor. Revista Mexicana de Ingeniería Química 4, 123-129.

Quintana-Hernández, P. A., Uribe, Martinez. B., Rico, R. V., Bolaños, R. E. (2008). Comparative analysis of power low type and diffusionintegration kinetic equations in batch cooling of sugar cane. Revista Mexicana de Ingeniería Química 7, 171-182.

Sánchez-Sánchez. K. B., Bolaños-Reynoso, E., Galicia-Contreras, L. S., Li, J., Quintana- Hernández, P. A. (2015). Effects of agitation rate on the metastable zone width in sugar cane batch crystallization. XXXVI AMIDIQ’s Memories, México.

Sander, A., Kardum, P. (2012). Pentaerythritol crystallization. Influence of the process conditions on the granulometric properties of crystals. Advanced Powder Technology 23, 191- 198.

Sarkar, D., Rohani, S., Jutan, A. (2006). Multiobjective optimization of seeded batch crystallization processes. Chemical Engineering Science 61, 5282-5295.

Suarez, P. L. A., Georgieva, P., Feyo de Azevedo, S. (2011). Nonlinear MPC for fed-batch multiple stages sugar crystallization. Chemical Engineering Research & Development 89, 753-767.

Swindells, J. F., Snyder, C. F., Hardy, R. C., Golden, P. E. (1958). Viscosities of sucrose at various temperatures: tables of recalculated values. UNITED STATES DEPARTMENT OF COMMERCE, National Bureau of Standards.

Velazquez, C. O., Bolaños, R. E., Rodríguez, E., Álvarez, R. J. (2010). Characterization of cane sugar crystallization using image fractal analysis. Journal of Food Engineering 100, 77-84.

Velazquez, C. O., Bola˜nos, R. E., Rodriguez, E., Álvarez, R. J. (2010). Fractal analysis of crystallization slurry images. Journal of Crystal Growth 312, 842-850.

Velazquez, C. O., Bolaños, R. E., López, Z. L., Álvarez, R. J. (2010). Experimental evaluation of the concentration zone widths in cane sugar crystallization using data and image acquisition. In Proceedings of the World Congress on Engineering, London, U. K.

Wang, Y. H., Ward, D. F. (2015). Seeding and optimization of batch reactive crystallization. Industrial and Engineering Chemistry Research 54, 9360-9368.
How to Cite
Sánchez-Sánchez, K., Bolaños-Reynoso, E., & Urrea-García, G. (2019). ANALYSIS OF OPERATING CONDITIONS FOR CANE SUGAR BATCH CRYSTALLIZATION BASED ON MSZW COUPLED WITH MECHANISTIC KINETIC MODELS. Revista Mexicana De Ingeniería Química, 16(3), 1029-1052. Retrieved from
Simulation and control