METASTABLE ZONE WIDTH MEASUREMENT OF ADIPIC ACID-WATER SOLUTIONS

  • P.A. Quintana-Hernández Universidad Michoacana de San Nicolás de Hidalgo
  • G. Díaz-Pérez Instituto Tecnológico de Celaya
  • V. Rico-Ramírez Instituto Tecnológico de Celaya
  • L.I. Salcedo-Estrada Universidad Michoacana de San Nicolás de Hidalgo
Keywords: crystallization, density, nucleation order, polythermal method, supersaturation

Abstract

The metastable zone width of adipic acid-water solutions has been determined in a temperature range from 293.15 to 328.15 K and cooling rates from 1 to 30 K·h-1 by means of the conventional polythermal method, using a laser diffraction technique. In addition, it is proposed an alternative method for estimating the metastable zone width based on the solution density measured online. The apparent nucleation order is evaluated using the Nývlt equation. Experimental results showed that initial composition and cooling rate had significant effects on the metastable zone width. An increment in cooling rate increased the metastable zone width and an increment in initial composition decreased the metastable zone width. On the other hand, it was found that online density measurements could be used as an alternate method for estimating the metastable zone width. The comparison of metastable zone width obtained with both methods produced an average difference of 6.75 %. Finally, the apparent nucleation order calculated was 4.3 which is closed to the value 4.2 reported in the literature

References

Costa Calaine, B. B., da Costa Aline C., and Filho, R. M. (2005). Mathematical modeling and optimal control strategy development for an adipic acid crystallization process. Chemical Engineering Process 44, 737-753.

Díaz-Pérez, G. (2011). Análisis del Proceso de Nucleación para Determinar el Ancho de la Zona de Saturación Metaestable del Sistema Acído Adípico-Agua. MS Chemical Engineering Thesis. Instituto Tecnológico de Celaya, México.

Jiaoyu, P., Yaping, D., Zhen, N., Fanzhi, K., Qingfen, M. andWu, L. (2012). Solubility and metastable zone width measurement of borax decahydrate in potassium chloride solution. Journal of Chemical Engineering Data 57, 890-895.

Kadam, S. S., Kramer, H. J. M. and ter Horst, J. H. (2011). Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Crystal Growth and Design 11, 1271-1277.

Kadam, S. S., Kulkarni, S. A., Coloma Ribera, R., Stankiewicz, A. I., ter Horst, J. H., and Kramer, H. J. M. (2012). A new view on the metastable zone width during cooling crystallization. Chemical Engineering Science 72, 10-19.

Kashchiev, D. and Van Rosmalen, G. M. (2003). Review: Nucleation in solutions revisited. Crystal Research Technology 38, 555-574.

Kashchiev, D., Borissova, A., Hammond, R. B. and Roberts, K. J. (2010). Eect of cooling rate on the critical undercooling for crystallization. Journal of Crystal Growth 312, 698-705.

Kim, K. and Mersmann, A. (2001). Estimation of metastable zone width in different nucleation processes. Chemical Engineering Science 56, 2315-2324.

Kubota, N. (2008). A new interpretation of metastable zone widths measured for unseeded solutions. Journal of Crystal Growth 310, 629- 634.

Kubota, N. (2010). A unified interpretation of metastable zone widths and induction times measured for seeded solutions. Journal of Crystal Growth 312, 548-554.

Liu, C., Zhang, D. H., Sun, C. G. and Shen, Z. Q. (1991). The modelling and simulation of a multistage crystallizer. Chemical Engineering Journal 46, 9-14.

Mersmann, A. (1996). Supersaturation and nucleation. Chemical Engineering Research and Design 74A, 812-820.

Nývlt, J. (1968). Kinetics of nucleation in solutions. Journal of Crystal Growth 3, 377-383.

O'grady, D., Barrett, M., Casey, E. and Glennon, B. (2007). The effect of mixing on the metastable zone width and nucleation kinetics in the anti-solvent crystallization of benzoic acid. Chemical Engineering Research and Design 85,945-952.

Quintana-Hernández, P. A., Moncada-Abaunza, D. A., Bola˜nos-Reynoso, E., and Salcedo-Estrada, L. I. (2005). Evaluación del crecimiento de cristales de azúcar y determinación del factor de forma de área superficial. Revista Mexicana de Ingeniería Química 4, 123-129.

Sangwal, K. (2009). A Novel self-consistent Nývlt-like equation for metastable zone width determined by the polythermal method. Crystal Research and Technology 44, 231-247.

Sangwal, K. (2009). Novel approach to analyze metastable zone width determined by the polythermal method: Physical interpretation of various parameters. Crystal Growth Design 9, 942-950.

Sangwal, K. (2011). Recent developments in understanding of the metastable zone width of dierent solute-solvent systems. Journal of Crystal Growth 318, 103-109.

Sato K., Aokiand K., Noyori, R. (1998). For a green route to adipic acid from cyclohexene and H2O2. Science 281, 1646-1647.

Titiz-Sargut, S. and Ulrich, J. (2002). Influence of additives on the width of the metastable zone. Crystal Growth Design 2, 371-374.

Titiz-Sargut S. and Ulrich, J. (2003). Application of a protected ultrasound sensor for the determination of the width of the metastable zone. Chemical Engineering Process 42, 841- 846.

Trifkovic, M., Sheikhzadeh, M. and Rohani, S. (2009). Determination of metastable zone width for combined anti-solvent/cooling crystallization. Journal of Crystal Growth 311, 3640-3650.

Zhibo, M., Xiaobo, S., Xianghai, L., Yu, W. and Guoji, L. (2009). Measurement and correlation of solubilities of adipic acid in different solvents. Chinese Journal of Chemical Engineering 17, 473-477.
Published
2020-01-09
How to Cite
Quintana-Hernández, P., Díaz-Pérez, G., Rico-Ramírez, V., & Salcedo-Estrada, L. (2020). METASTABLE ZONE WIDTH MEASUREMENT OF ADIPIC ACID-WATER SOLUTIONS. Revista Mexicana De Ingeniería Química, 15(3), 1009-1018. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1153