DIFFUSIVITY COEFFICIENT ESTIMATION DURING COFFEE ROASTING IN A SPOUTED BED USING A FUZZY MODEL

  • L. Virgen-Navarro Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • E.J. Herrera-López Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • H. Espinosa-Andrews Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • G.M. Guatemala-Morales Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco
  • R.I. Corona-González Universidad de Guadalajara
  • E. Arriola-Guevara Universidad de Guadalajara
Keywords: Mamdani fuzzy model, roasting coffee, spouted bed, adjustable parameters, effective diffusion coefficient

Abstract

Starting from the grain itself, the process of roasting coffee (Coffea arabica) is essential for a quality coffee. Since the movement of water is essential, drying kinetics allows modeling the process and obtain the effective diffusion coefficient, De f f , key parameter to understand the water transport during the roasting process. Two approaches were compared considering that this coefficient is a function of particle temperature, Tp, and low humidity, MR. For the first model, adjustable model parameters were used, while for the second, a Mamdani fuzzy type of model was proposed. Each model was included in the Fick’s second law to estimate theoretical values of MR. These values were compared with the experimental ones obtained during roasting coffee in a spouted bed at three different levels of air temperature, TA (275, 300 and 325°C). Even though the adjustable parameters model showed a good fit, the Mamdani fuzzy model was much better (R2 > 0.999 and SEE < 0.001), but plots showed anomalous values for those regions without experimental data.

References

Arriola, E. (1997). Residence time distribution of solids in staged spouted beds. PhD Thesis. Oregon State University.

Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R. y Escher, F. (2008). Coffee roasting and aroma formation: application of different timetemperature conditions. Journal of Agricultural and Food Chemistry 56, 5836-5846.

Baggenstoss, J., Poisson, L., Luethi, R., Perren, R. y Escher, F. (2007). Influence of water quench cooling on degassing and aroma stability of roasted coffee. Journal of Agricultural and Food Chemistry 55, 6685-6691.

Basile, M. y Kikic, I. (2009). A lumped specific heat capacity approach for predicting the non-stationary thermal profile of coffee during roasting. Chemical and Biochemical Engineering Quarterly 23, 167-177.

Bonnländer, B., Eggers, R., Engelhardt, U.H. y Maier, H.G. (2005). Roasting. En: Espresso Coffee: the Science of Quality, (Illy, A. y Viani, R. Eds.), Pp. 179-214. Elsevier Ltd.

Bottazzi, D., Farina, S., Milani, M. y Montorsi, L. (2012). A numerical approach for the analysis of the coffee roasting process. Journal of Food Engineering 112, 243-252.

Bruchmüller, J., Gu, S., Luo y Van Wachem, B.G.M. (2010). Discrete element method for multiscale modeling. Journal of Multiscale Modelling 2, 147-162.

Buffo, R.A. y Cardelli-Freire, C. (2004). Coffee flavour: an overview. Flavour and Fragrance Journal 19, 99-104.

Crank, J. (1975). The Mathematics of Diffusion. Segunda edición. Editorial Oxford University Press, Oxford.

Diamante, L. M. y Munro, P.A. (1993). Mathematical modelling of the thin layer solar drying of sweet potato slices. Solar Energy 51, 271-276.

Doymaz, I. (2012). Evaluation of some thin-layer drying models of persimmon slices (diospyros kaki L.). Energy Conversion and Management 56, 199-205.

Fabbri, A., Cevoli, C., Alessandrini, L. y Romani, S. (2011). Numerical modeling of heat and mass transfer during coffee roasting process. Journal of Food Engineering 105, 264-269.

Guatemala-Morales, G.M. (2007). Tostado de café (coffea arábica) utilizando un sistema de lechos fuente en multietapa. Tesis de Doctorado en Ciencias en Ingeniería Química. Universidad de Guadalajara.

Henry, V. (2008). Fuzzy logic application to drying kinetics modelling. Presentación. Pp. 2206-11. Seoul, Korea: 17th IFAC World Congress

Hernández, J. A., Heyd, B., Irles, C., Valdovinos, B. y Trystram G. (2007). Analysis of the heat and mass transfer during coffee batch roasting. Journal of Food Engineering 78, 1141-1148.

Hernández-Botello, M.T., Chanona-Pérez, J.J., Mendoza-Pérez, J.A., Trejo-Valdez, M., Calderón-Domínguez, G., Barriada Pereira, J.L., Sastre de Vicente, M.E., Perea-Flores, M.J. y Terres-Rojas, E. (2014). Effect of the fluidized bed drying on the structure and biosorption capability of Pb+2 of agave epidermis. Revista Mexicana de Ingeniería Química 13, 865-885.

Heyd, B., Broyart, B., Hernandez, J.A., ValdovinosTijerino, B. y Trystram, G. (2007). Physical model of heat and mass transfer in a spouted bed coffee roaster. Drying Technology 25, 1243- 1248.

Hii, C. L., Law, C.L. y Cloke, M. (2009). Modeling using a new thin layer drying model and product quality of cocoa. Journal of Food Engineering 90, 191-198.

Jumah, R. y Mujumdar, A.S. (2005). Modeling intermittent drying using an adaptive neurofuzzy inference system. Drying Technology 23, 1075-1092.

Kiranoudis, C. T., Maroulis, Z.B. y MarinosKouris, D. (1995). Heat and mass transfer model building in drying with multiresponse data. International Journal of Heat and Mass Transfer 38, 463-480.

Lagarias, J.C., Reeds, J.A., Wright, M.H. y Wright, P.E. (1998). Convergence properties of the nelder–mead simplex method in low dimensions. SIAM Journal on Optimization 9, 112-147.

Marinos-Kouris, D. y Maroulis, Z.B. (2006). Transport properties in the drying of solids. En: Handbook of Industrial Drying (Mujumdar, A.S. Eds.). CRC Press. Pp. 81-119.

Mohapatra, D. y Srinivasa Rao, P. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering 66, 513-518.

Murthy, K. V., Ravi, R., Bhat, K. K., y Raghavarao, K.S.M.S. (2008). Studies on roasting of wheat using fluidized bed roaster. Journal of Food Engineering 89, 336-342.

NMX-F-083. (1986). Determinación de Humedad En Productos Alimenticios. Dirección General de Normas Mexicanas.

Passino, K. y Yurkovich, S. (1998). Fuzzy control. Addison-Wesley. EEUU.

Robbins, P. T. y Fryer, P.J. (2003). The spouted-bed roasting of barley: development of a predictive model for moisture and temperature. Journal of Food Engineering 59, 199-208.

Simal, S., Femenia, A., Garcia-Pascual, P. y Rosselló, C. (2003). Simulation of the drying curves of a meat-based product: effect of the external resistance to mass transfer. Journal of Food Engineering 58, 193-199.

Zhang, Q., y Litchfield, J.B. (1993). Fuzzy logic control for a continuous crossflow grain dryer. Journal of Food Process Engineering 16, 59-77.
Published
2020-01-14
How to Cite
Virgen-Navarro, L., Herrera-López, E., Espinosa-Andrews, H., Guatemala-Morales, G., Corona-González, R., & Arriola-Guevara, E. (2020). DIFFUSIVITY COEFFICIENT ESTIMATION DURING COFFEE ROASTING IN A SPOUTED BED USING A FUZZY MODEL. Revista Mexicana De Ingeniería Química, 15(2), 513-524. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1163
Section
Food Engineering