STATISTICAL ANALYSIS AND MODELING OF MULTICOMPONENT SORPTION OF HEAVY METALS IN WATER USING BONE CHAR

  • D.I. Mendoza-Castillo Instituto Tecnológico de Aguascalientes
  • A. Bonilla-Petriciolet Instituto Tecnológico de Aguascalientes
  • J. Jauregui-Rincon Universidad Autónoma de Aguascalientes
Keywords: bone char, sorption, heavy metals, water treatment

Abstract

In this study, the simultaneous removal of Cd2+, Ni2+ and Zn2+ ions from aqueous solution using bone char was studied. Multicomponent sorption data of ternary metal solutions were obtained employing Taguchi’s experimental designs and a statistical analysis using the signal-to-noise ratio was performed to identify and quantify the antagonistic sorption effects between these metal ions. This study illustrates the advantages of using these statistical tools for the analysis of multicomponent sorption data. Our results showed that there were significant antagonistic sorption effects caused by the competition between these metal ions in the solution. In particular, Ni2+ has the greatest antagonistic effect on the removal of other co-ions, while the ion Zn2+ has the less competitive effect on the multicomponent heavy metal removal using bone char. The sorption capacity increased in the following order: Cd2+ < Zn2+ << Ni2+. This removal trend may be related to the physicochemical properties of the different pollutants present in the solution. Equilibrium data were fitted to different theoretical and empirical sorption isotherm models for multicomponent systems. In summary, our results suggested that the bone char can be considered as alternative sorbent for treatment of aqueous solutions polluted by Cd2+, Ni2+ and Zn2+ ions.

 

References

Ahmadpour, A., Wang, K. y Do, D.D. (1998). Comparison of models on the prediction of binary equilibrium data of activated carbons. AIChE Journal 44, 740-752.

Aksu, Z., Ac¸ikel, U., Kabasakal, E. y Tezer, S. ¨ (2002). Equilibrium modelling of individual and simultaneous biosorption of chromium (VI) and nickel (II) onto dried activated sludge. Water Research 36, 3063-3073.

Al-Asheh, S., Banat, F., Al-Omari, R. y Duvnjak, Z. (2000). Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data. Chemosphere 41, 659-665.

Al-Asheh, S., Banat, F. y Al-Rousan, D. (2002). Adsorption of copper, zinc and nickel ions from single and binary metal ion mixtures on to chicken feathers. Adsorption Science and Technology 20, 849-864.

Al-Asheh, S. y Duvnjak, Z. (1997). Sorption of cadmium and other heavy metals by pine bark. Journal of Hazardous Materials 56, 35-51.

Badawy, N.A., El-Bayaa, A.A. y Abd, A.E. (2010). Vermiculite as an exchanger for copper (II) and Cr (III) ions, kinetic studies. Ionics 16, 733-739.

Baig, K.S., Doan, H.D. y Wu, J. (2009). Multicomponent isotherms for biosorption of Ni2+ and Zn2+ . Desalination 249, 429-439.

Balasubramanian, R., Perumal, S.V. y Vijayaraghavan, K. (2009). Equilibrium Isotherm Studies for the Multicomponent Adsorption of Lead, Zinc, and Cadmium onto Indonesian Peat. Industrial & Engineering Chemistry Research 48, 2093-2099.

Bhattacharya, A. K., Mandal, S.N. y Das, S.K. (2006). Adsorption of Zn (II) from Aqueous Solution by using Different Adsorbents. Chemical Engineering Journal 123, 43-51.

Bonilla-Petriciolet, A., Lira-Padilla, M.G. y Soto-Becerra, C.A. (2005). Aplicación del método de optimización de recocido simulado en la regresión de isotermas de adsorción. Revista Internacional de Contaminación Ambiental 21, 201-206.

Brum, R.F., Marinuchi, R., Gomes, J.M., Ostroski, I.C., Arroyo, P.A., Tavares, C.R.G. y Barros, M.A.S. (2010). Equilibrium studies of Mn (II), Pb (II) and Cr (III) in bone char. Chemical Engineering Transactions 21, 721-726.



Cheung, C.W., Choy, K.K.H., Porter, J.F. y Mckay, G. (2005). Empirical Multicomponent Equilibrium and Film-Pore Model for the Sorption of Copper, Cadmium and Zinc onto Bone Char. Adsorption 11, 15-29.

Cheung, C.W., Ko, D.C.K., Porter, J.F. y McKay, G. (2003). Binary Metal Sorption on Bone Char Mass Transport Model Using IAST. Langmuir 19, 4144-4153.

Cheung, C.W., Porter, J.F. y McKay, G. (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Research 3, 605-612.

Choy, K.K.H. y McKay, G. (2005). Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere 60, 1141-1150.

Daneshvar, N., Khataee, A.R., Rasoilifars, M.H. y Pourhassan, M. (2007). Biodegradation of Dye Solution containing Malachite Green: Optimization of Effective Parameters using Taguchi Method. Journal of Hazardous Materials 143, 214-219.

Doyurum, S. y Celik, A. (2006). Pb (II) and Cd (II) removal from aqueous solutions by olive cake. Journal of Hazardous Materials B138, 22-28.

Elizalde-González, M.P. y Hernández-Montoya, V.(2009). Removal of acid orange 7 by guava seed carbon: A four parameter optimization study. Journal of Hazardous Materials 168, 515-522.

Fereidouni, M., Daneshi, A. y Younesi, H. (2009). Biosorption equilibria of binary Cd (II) and Ni (II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: Application of response surface methodology. Journal of Hazardous Materials 168, 1437-1448.

Guijarro-Aldaco, A., Hernandez-Montoya, V., ´ Bonilla-Petriciolet, A., Montes-Moran, M.A. ´ y Mendoza-Castillo, D.I. (2011). Improving the adsorption of heavy metals from water using commercial carbons modified with egg shell wastes. Industrial & Engineering Chemistry Research 50, 9354-9362.

Hassan, S.S.M., Awwad, N.S. y Aboterika, A.H.A. (2007). Removal of Mercury (II) from Wastewater Using Camel Bone Charcoal. Journal of Hazardous Materials 154, 992-997.

Hernández, T.R., Palma, C.R. y Piña, B.M.C. (1999). Hidroxiapatita y sus aplicaciones. Revista Mexicana de F´ısica 45(S1), 144-147.

Ibrahim, D., Froberg, B., Wolf, A. y Rusyniak, D.E. (2006). Heavy Metal Poisoning: Clinical Presentations and Pathophysiology. Clinics in Laboratory Medice 26, 67-97.

Ko, D.C.K., Cheung, C.W., Choy, K.K.H., Porter, J.F. y McKay, G. (2004). Sorption equilibria of metal ions on bone char. Chemosphere 54, 273- 281.

Ko, D.C.K., Porter, J.F. y McKay, G. (2005). Application of the concentration-dependent surface diffusion model on the multicomponent fixed-bed adsorption systems. Chemical Engineering Science 60, 5472-5479.


Kongsuwan, A., Patnukao, P. y Pavasant, P. (2009). Binary component sorption of Cu (II) and Pb (II) with activated carbon from Eucalyptus camaldulensis Dehn bark. Journal of Industrial and Engineering Chemistry 15, 465-470.

Körbahti, B. K., Artut, K., Gec¸gel, C. y Özer, A. (2011). Electrochemical Decolorization of Textile Dyes and Removal of Metal Ions from Textile Dye and Metal Ion Binary Mixtures. Chemical Engineering Journal 173, 677-688.

Lu, W.B., Kao, W.C., Shi, J.J. y Chang, J.S. (2008). Exploring multi-metal biosorption by indigenous metal-hyperresistant enterobacter sp. J1 using experimental design methodologies. Journal of Hazardous Materials 153, 372-381.

Mahamadi, C. y Nharingo, T. (2010). Competitive adsorption of Pb2+ , Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresource Technology 101, 859-864.

Mahamuni, N.N. y Adewuyi, Y.G. (2010). Application of Taguchi Method to Investigate the Effects of Process Parameters on the Transesterification of Soybean Oil Using High Frequency Ultrasound. Energy Fuels 24, 2120- 2126.

McKay, G. y Porter, J.F. (1997). Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. Journal of Chemical Technology and Biotechnology 69, 309-320.

Mendoza-Castillo, D.I., Bonilla-Petriciolet, A. y Jáuregui-Rincón, J. (2015). On the importance of surface chemistry and composition of Bone char for the sorption of heavy metals from aqueous solution. Desalination and Water Treatment 54, 1651-1662.

Mohan, D., Pittman, Jr. C.U. y Steele, P.H. (2006). Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent. Journal of Colloid and Interface Science 297, 489-504.

Mohapatra, H. y Gupta, R. (2005). Concurrent sorption of Zn (II), Cu (II) and Co (II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresource Technology 96, 1387-1398.

Mottershead, C. (2011). Los inusuales usos de los animales. BBC Mundo. Disponible en: http://www.bbc.co.uk/mundo/noticias/2011/06/ 110608 inusuales usos de los animales.shtml

Mouni, L., Merabet, D., Robert, D. y Bouzaza, A. (2009). Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma 154, 30-35.

Pagnanelli, F., Esposito, A. y Veglio, F. (2002). Multi-metallic modelling of biosorption of binary systems. Water Research 36, 4095-4105.

Pan, X., Wang, J. y Zhang, D. (2009). Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism. Desalination 249, 609-614.

Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P. y Kanellopoulos, N.K. (2009). Prediction of binary adsorption isotherms of Cu2+ , Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. Journal of Hazardous Materials 162, 1347-1354.
Pérez-Marín, A.B., Ballester, A., González, F., Blazquez, M.L., Muñoz, J.A., Sáez, J. y Meseguer-Zapata, V. (2008). Study of cadmium, zinc and lead biosorption by orange wastes using the subsequent addition method. Bioresource Technology 99, 8101-8106.


Reynel-Ávila, H.E., Mendoza-Castillo, D.I., Hernández-Montoya, V. y Bonilla-Petriciolet, A. (2010). Multicomponent removal of heavy metals from aqueous solution using low-cost sorbents. Water Production and Wastewaters Treatment, New York: Nova Science Publisher 69-99.

Rosas-Escobar, R. (2005). Los animales vivos como materia prima industrial. Disponible en http://foros.fox.presidencia.gob.mx/read.php?23, 164590

Sharma, P., Kumari, P., Srivastava, M.M. y Srivastava, S. (2007). Ternary biosorption studies of Cd (II), Cr (III) and Ni (II) on shelled Moringa oleifera seeds. Bioresource Technology 98, 474-477.

Srivastava, V.C., Mall, I.D. y Mishra, I.M. (2006). Equilibrium modeling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal 117, 79- 91.

Srivastava, V.C., Mall, I.D. y Mishra, I.M. (2007). Multicomponent adsorption study of metal ions onto bagasse fly ash using Taguchi’s design of experimental methodology. Industrial & Engineering Chemistry Research 46, 5697- 5706.

Srivastava, V.C., Mall, I.D. y Mishra, I.M. (2008). Removal of cadmium (II) and zinc (II) metal ions from binary aqueous solution by rice husk ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects 312, 172-184.

Srivastava, V.C., Mall, I.D. y Mishra, I.M. (2009). Equilibrium modeling of ternary adsorption of metal ions onto rice husk ash. Journal of Chemical and Engineering Data 54, 705-711.

Sud, D., Mahajan, G. y Kaur, M.P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Bioresource Technology 99, 6017-6027.

Tovar-Gómez, R., Rivera-Ramírez, D.A., Hernández-Montoya, V., Bonilla-Petriciolet, A., Durán-Valle, C.J. y Montes-Morán, M.A. (2012). Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon. Journal of Hazardous Materials 199-200, 290- 300.

Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59, 203-216.

Vullo, D.L. (2003). Microorganismos y metales pesados: una interacción en beneficio del medio ambiente. Química Viva 2, 93-104.

Wang, J. y Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances 27, 195-226.

Wilson, J.A., Pulford, I.D. y Thomas, S. (2003). Sorption of Cu and Zn by bone charcoal. Environmental Geochemistry and Health 25, 51-56.
Xu, Y., Schwartr, F.W. y Tralna, S.J. (1994). Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces. Environmental Science and Technology 28, 1472-1480.

Xu, H.Y., Yang, L., Wang, P., Liu, Y. y Peng, M.S. (2008). Kinetic research on the sorption of aqueous lead by synthetic carbonate Hydroxyapatite. Journal of Environmental Management 86, 319-328.
Published
2020-01-14
How to Cite
Mendoza-Castillo, D., Bonilla-Petriciolet, A., & Jauregui-Rincon, J. (2020). STATISTICAL ANALYSIS AND MODELING OF MULTICOMPONENT SORPTION OF HEAVY METALS IN WATER USING BONE CHAR. Revista Mexicana De Ingeniería Química, 15(2), 525-542. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1164
Section
Catalysis, kinetics and reactors