REMOVAL OF WASTEWATER POLLUTANT IN ARTIFICIAL WETLANDS IMPLEMENTED IN ACTOPAN, VERACRUZ, MEXICO

  • J.L. Marín-Muñiz El Colegio de Veracruz
Keywords: wastewater, constructed wetlands, tepezyl, porous rock river, microcosms

Abstract

Water pollution is one of the most serious ecological threats we face today. The use of biotechnologies as constructed wetlands is an ecologically and economically viable option to mitigate this situation. In this study the removal of contaminants from wastewater was evaluated with microcosms of wetlands planted with Typha spp. in Pastorías, Actopan, Veracruz, Mexico. Twelve microcosms were implemented; six with tepezyl (ST) and six with porous rock river (PPR) as substrate, from which; three were in ST with plant and as a controls, three without plant. Three microcosms with PPR with plant and three without plant. The study was conducted during the dry (March to June) and the rainy periods (July-September) 2014. No significant effect on contaminant removal was observed with respect to the type of substrate (P > 0.05), nor, depending on the dray and rainy periods (P > 0.05). The average removal of N-NO3, P-PO4 and BOD5 were 60.3, 55.4 and 80.1%, respectively, in wetlands with Typha spp; while in wetlands without vegetation the removals were 19.6, 18.8 and 63.6 % for N-NO3, P-PO4 and BOD5, respectively. The results reveal the use of porous river rocks and tepezyl as suitable substrates for constructed wetlands and the usefulness of Typha spp. in removing contaminants from wastewater in dry and rainy periods.

References

Arivoli, A. y Mohanraj, R. (2013). Efficacy of Typha Angustifolia based vertical flow constructed wetland system in pollutant reduction of domestic wastewater. International Journal of Environmental Sciences 3, 1497-1508.

APHA-AWWA-WEF (2005). Standard Methods for the Examination of Water and Wastewater. 21th Edition. Nueva York, 4-90 a 4-94.

Brix, H. (2003). Plants used in constructed wetlands and their functions. In Dias, V. & J. Vymazal (eds), Proceedings of Conference on the Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands. ICN and INAG, Pp 81-109. Lisboa.

Carranza-Diaz, O., Schultze-Nobre, L., Moeder, M., Nivala, J., Kuschk, P. y Koeser, H. (2014). Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecological Engineering 7, 234-245.

Comisión Nacional del Agua (CONAGUA (2014). Num3ragua. Secretaría de Medio Ambiente y Recursos Naturales. México. P. 100.

Contreras, A. y Morandín, I. (2016). Creatividad y sustentabilidad. Revista Internacional de Desarrollo Regional Sustentable 1, 49-63.

Debing, J., Lianb, Z.i., Xiaosong, Y., Jianming, H., Mengbin, Z. y Yuzhong, W. (2009) COD, TN and TP removal of Typha wetland vegetation of different structures. Polish Journal of Environmental Studies 18, 183-190.

García-García, P., Ruelas-Monjardín, L. y Marín-Muñiz, J. L. (2015). Constructed wetlands: a solution to water quality issues in Mexico? Water Policy 18, (3) 654-669.

Inegi (2010). Instituto Nacional de Estadística, Geografía e Informática. Censos nacionales. http://www.inegi.gob.mx.

Kadlec, R. H. y Wallace, S. D. (2009). Treatment Wetlands. 2nd ed. Boca Raton: Taylor & Francis Group. Florida.

Lascurain, M. (2016). Una estrategia para el desarrollo sustentable en tiempos de globalización económica. Revista Internacional de Desarrollo Regional Sustentable 1, 35-48.

Li, L., Li, Y., Biswas, D., Nian, Y. y Jiang, G. (2008), Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China. Bioresource Technology 99, 1656-1663.

Lucho-Constantino, C.A., Medina-Moreno, S.A., Beltrán-Hernández, R.I., Juárez-Cruz, B., Vásquez-Rodríguez, G.A. y Lizárraga-Mendiola, L. (2015). Diseño de fosas sépticas rectangulares mediante el uso de la herramienta fosep. Revista Mexicana de Ingeniería Química 14, 757-765.

Marín-Muñiz, J.L., Hernández, M.E. y Moreno-Casasola, P. (2015). Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: Effect of plant community and seasonal dynamics. Atmospheric Environment 107, 107-117.

Mitsch, W.J. y Gosselink, J.G. (2007). Wetlands, fourth ed. John Wiley & Sons, Nueva York.

Navarro, A., Hernández, M.E., Bayona, J., Morales, L. y Ruiz, P. (2011). Removal of selected organic pollutants and coliforms in pilot constructed wetlands in southeastern Mexico. International Journal of Environmental Analytical Chemistry 97, 7-8.

Núñez, M., Cárdenas de Flores, C., Ramírez, Y., Rincón, S., Saules, L. y Morales, E. (2011). Removal of nitrogen and phosphorus by Typha dominguensis and Lemna sp. in laboratory scale constructed wetlands. Revista Técnica de la Facultad de Ingeniería de Universidad del Zulia 34, 246-254.

Rivas, A., Barceló-Quintal, I. y Moeller, G. E. (2011). Pollutant removal in a multistage municipal wastewater treatment system comprised of constructed wetlands and a maturation pond, in a temperate climate. Water, Science and Technology 64, 980-987.

Rzedowski, J. y Rzedowski, G. (1990). Flora fanerogámica del Valle de México. Volumen III. Instituto de Ecología. Centro regional del Bajío. Patzcuaro, Michacán. México.

Sheoran, A. S. (2006). A laboratory treatment study of acid mine water of wetlands with emergent macrophyte (Typha angustata). International Journal of Mining Reclamation and Environment 20, 209-222.

Tang, X., Huang, S., Scholz, M. y Li, J. (2011). Nutrient removal in vertical subsurface flow constructed wetlands treating eutrophic river water. International Journal of Environmental Analytical Chemistry 91, 727-739.

Toro-Vélez, A.F., Madera-Parra, C.A., Peña-Varón, M.R., Lee, W.Y., Bezares, J.C., Walker, W.S., Cárdenas-Henao, H., Quesada-Calderón, S., García-Hernández, H. y Lens, P.N.L. (2016). BPA and NP removal form municipal wastewater by tropical horizontal constructed wetlands. Science of the Total Environment 542, 93-101.

USEPA. 2002. United States Environmental Protection Agency. Methods for evaluating wetland conditions: # 16, vegetation-based indicators of wetland nutrient enrichment. EPA882-R-02-024. Washington, DC.

Van de Moortel, M.K., Meers, E., Pauw, N. y Tack, F. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air and Soil Pollution 212, 281-297.

Vymazal J. (2011). Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674, 133-156.

Wang, C., Zheng, S., Wang, P. y Qian, J. (2014). Effect of vegetation on the removal of contaminants in aquatic environments: A review. Journal of Hydrodynamics 26, 497-511.

Zhang, H. H., Tian, J. S., Zhang, Y. M., Wu, Z. L., Hu, Y. y Li, D. L. (2012). Removal of phosphorus and nitrogen from domestic wastewater using a mineralized refuse-based bioreactor. Environmental Technology 33, 173- 181.

Zurita-Martínez, F., Castellanos-Hernández, O. A. y Rodríguez-Sahagun, A. (2011). El tratamiento de las aguas residuales municipales en las comunidades rurales de México. Revista Mexicana de Ciencias Agrícolas 1, 139-150.
Published
2020-01-16
How to Cite
Marín-Muñiz, J. (2020). REMOVAL OF WASTEWATER POLLUTANT IN ARTIFICIAL WETLANDS IMPLEMENTED IN ACTOPAN, VERACRUZ, MEXICO. Revista Mexicana De Ingeniería Química, 15(2), 553-563. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1173
Section
Environmental Engineering