TWO MODELS OF ELECTRICAL IMPEDANCE FOR ELECTRODES WITH TAP WATER AND THEIR CAPABILITY TO RECORD GAS VOLUME FRACTION

  • J.C. Rodríguez-Sierra Universidad Autónoma Metropolitana-Iztapalapa
  • A. Soria Universidad Autónoma Metropolitana-Iztapalapa
Keywords: electrical impedance, series model, parallel model, tap-water model, void fraction, air-water flow, bubble column

Abstract

Bubble columns are devices for simultaneous two-phase or three-phase flows. Phase interactions produce several flow patterns where the void fraction is an important variable involved in the behavior and fundamental in flow pattern transitions. Electrical impedance sensors (EIS) determine void fraction and perform as fast response, passive elements, exhibiting resistive, capacitive and inductive behaviors highly dependent upon the excitation frequency. A simple electrical model frequently used is a set of a resistance and a capacitor connected in parallel. Same elements can also be arranged in series, as we do here. We identify three behaviors in the series and parallel arrangements, as well as in the experimental data. While the ones of the series arrangement are coincident with experimental data, the ones of the parallel model are only partially coincident at high frequencies. Moreover, while the parallel model is insensitive to changes in gas volume fraction in the resistive range, the series model presents sensitivity to changes in the gas volume fraction. Therefore, on these grounds the series arrangement exhibits a better performance than the parallel model.

References

Banasiak, R., Wajman, R., Jaworski, T., Fiderek, P., Fidos, H., Nowakowski, J., Sankowski, D. (2014) Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy logic classification. International Journal of Multiphase Flow 58, 1-14.

Bernier, R.J. (1982). Unsteady two-phase flow instrumentation and measurement. Ph.D. Thesis, Doctor of Philosophy, California Institute of Technology, Pasadena, California.

Cheng H., Hills J.H., Azzopardi B.J. (2002) Effects of initial bubble size on flow pattern transition in a 28.9 mm diameter column. International Journal of Multiphase Flow 28, 10473-10620.

Costigan G., Whalley P.B. (1997). Slung flow regime identification from dynamic void fraction measurement in vertical air - water flows. Int. J. Multiphase Flow 23, 263-282.

Coutinho, F.R., Ofuchi, C.Y., de Arruda, L.V.R., Jr., F.N., Morales, R.E.M. (2014). A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow. Sensors 14, 9093-9116.

Devia, F., Fossa, M. (2003). Design and optimization of impedance probes for void fraction measurements. Flow Measurement and Instrumentation 14, 139-149.

dos Reis, E., da Silva, C.D. (2014). Experimental study on different configurations of capacitive sensors for measuring the volumetric concentration in two-phase flows. Flow Measurement and Instrumentation 37, 127-134.

Falcone, G. (2009a). Multiphase Flow Fundamentals, In: Developments in Petroleum Science, (G. Falcone, G.F. Hewitt, C. Alimonti, eds), Elsevier, 54:1-18.

Falcone, G. (2009b). Key Multiphase Flow Metering Techniques, In: Developments in Petroleum Science. (G. Falcone, G.F. Hewitt, C. Alimonti, eds), Elsevier, 54:47-190.

George, D. L., Torczynski, J., Shollenberger, K., O’Hern, T., Ceccio, S. (2001) Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography. International Journal of Multiphase Flow 27, 1903-1930.

Jaworek, A., Krupa, A., Trela, M. (2004). Capacitance sensor for void fraction measurement in water/steam flows. Flow Measurement and Instrumentation 15, 317-324.

Ko, M.S., Lee, B.A., Won, W. Y., Lee, Y.G., Jerng, D.W., Kim, S. (2015). An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe. Nuclear Engineering and Technology 47, 804-813.

Kytömaa, H.K., Brennen, C.E.(1988) Some observations of flow patterns and statistical properties of three component flow. Journal of Fluids Engineering 110, 76-84.

Li, H., Ji, H., Huang, Z., Wang, B., Li, H., Wu, G. (2016). A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels. Sensors 16, 159.

Mansfeld, F., Shih, H., Greene, H., and Tsai, C. H. (1993). Analysis of EIS Data for Common Corrosion Processes, In: Electrochemical Impedance: Analysis and Interpretation, (J.R. Scully, D.C. Silverman, and M.W. Kendig, eds.), American Society for Testing and Materials, Philadelphia, 37-53.

Martínez Gómez, R., Soria, A. (2003). An application of finite elements to the design of electrical impedance tomography systems. Revista Mexicana de Ingeniería Química 2, 127-133.

Micaelli, J.C. (1982). Propagation d’ondes dans les écoulements diphasiques á bulles á deux constituants. Étude théorique et expérimentale. Ph.D. Thesé, L’Institut National Polytechnique, Grenoble.

Prasser, H.M., (2007). Evolution of interfacial area concentration in a vertical air-water flow measured by wire-mesh sensors. Nuclear Engineering and Design 237, 1608-1617.

Rocha, M.S., Simões-Moreira, J.R. (2008). Void Fraction Measurement and Signal Analysis from Multiple-Electrode Impedance Sensors, Heat Transfer Engineering 29, 924-935.

Rodríguez, J.C. (2006). Pressure waves in a bubble column, Master Thesis (in Spanish), Master Degree, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City.

Saiz-Jabardo, J.M., Bouré, J.A. (1988). Experiments on void fraction waves. International Journal of Multiphase Flow 15, 483-493.

Sánchez-López, J.R.G., Soria, A., Salinas-Rodríguez, E. (2011) Compressible and Incompressible 1-D Linear Wave Propagation Assessment in Fast Fluidized Beds. AIChE Journal 57, 2965-2976.

Song, C.H., No H.C., Chung M.K. (1995). Investigation of bubble flow developments and its transition based on the instability of void fraction waves. International Journal od Multiphase Flow 21,381-404.

Soria, A., Salinas-Rodríguez, E. (2013) Assessing Significant Phenomena in Linear Perturbation Multiphase Flows. In: Fluid Dynamics in Physics, Engineering and Environmental Applications (Klapp J., Medina A., Cross A., Vargas C.A., eds), Springer-Verlag, 93-110.

Spedding, P., Nguyen, V. (1980). Regime maps for air-water two-phase flow. Chemical Engineering Science 35, 779-793.

Taitel, Y., Bornea, D., Dukler, A. (1980). Modeling flow pattern transitions for steady upward gasliquid flow in vertical tubes. AIChE Journal 26, 345-354.

Tournaire, A. (1986). Dependence of the instantaneous response of impedance probes on the local distribution of the void fraction in a pipe. International Journal of Multiphase Flow 12, 1019-1024.

Tournaire, A. (1987). Détection et étude des ondes de taux de vide en écoulements diphasique a bulles jusqu’a la transition bulles-bouchons. Ph.D. Thése. L’Institut National Polytechnique, Grenoble.

Tri, B.D. (2005). Identification of two phase flow regimes by void fraction measurements. Vietnam Journal of Mechanics 27, 59-65.

Wu, H., Tan, C., Dong, X., Dong, F. (2015). Design of a Conductance and Capacitance Combination Sensor for water hold up measurement in oilwater two-phase flow. Flow Measurement and Instrumentation 46, 218-229.

Yang, H., Kim, D., Kim, M. (2003). Void fraction measurement using impedance method. Flow Measurement and Instrumentation 14, 151-160.

Zenit, R., Hunt, M.L. (2000) Solid fraction fluctuations in solid-liquid flows. International Journal of Multiphase Flow 26, 763-781.
Published
2020-01-17
How to Cite
Rodríguez-Sierra, J., & Soria, A. (2020). TWO MODELS OF ELECTRICAL IMPEDANCE FOR ELECTRODES WITH TAP WATER AND THEIR CAPABILITY TO RECORD GAS VOLUME FRACTION. Revista Mexicana De Ingeniería Química, 15(2), 543-551. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1187
Section
Transport phenomena