KINETIC AND STATISTICAL CRITERIA FOR THE SELECTION OF CONDITIONS OF EXTRACTION OF VOLATILE COMPOUNDS OF PIQUIN PEPPER (Capsicum annuum L. var. glabriusculum)

  • C.F. Vázquez-Cárdenas Escuela de Ingeniería y Ciencias. Centro de Biotecnología FEMSA. Tecnológico de Monterrey
  • J.I. Valiente-Banuet , Escuela de Biotecnología y Ciencias de la Salud. Centro de Biotecnología FEMSA. Tecnológico de Monterrey
  • P. Caballero-Mata Escuela de Ingeniería y Tecnologías de Información. Centro de Calidad Ambiental. Tecnológico de Monterrey
  • H. Mújica-Paz Escuela de Ingeniería y Ciencias. Centro de Biotecnología FEMSA. Tecnológico de Monterrey
  • J. Rodríguez-Rodríguez Escuela de Ingeniería y Tecnologías de Información. Centro de Calidad Ambiental. Tecnológico de Monterrey
  • J. Welti-Chanes Escuela de Ingeniería y Ciencias. Centro de Biotecnología FEMSA. Tecnológico de Monterrey
Keywords: aromatic fraction, bird pepper, fractional conversion model, HS-SPME and GC-MS, principal component analysis (PCA), volatile profile

Abstract

This study was aimed to analyze the effect of temperature (40, 60, and 80 ºC) and time (10, 40, and 80 min) on extraction of major volatile compounds (VC) from piquin peppers (Capsicum annuum L. var. glabriusculum) using HS-SPME. VC extraction was significantly affected (P<0.05) by temperature and time, which was described by a kinetic fractional conversion equation and the Arrhenius model. However, principal component analysis (PCA) performed on major VC determined a differential response of VC to extraction conditions. Two distinctive groups of compounds were identified using kinetic and statistical criteria: compounds associated (GR1) and poorly associated (GR2) with the aromatic profile of peppers. Extraction of GR1 compounds was favored at 40 oC and 80 min; whereas for GR2, extraction was favored at 80 oC and 80 min. The best extraction condition of VC associated with aroma of piquin pepper was determined (40 ºC and 80 min) considering the individual effect of temperature that favored extraction of VC within GR1. The results showed that the use PCA can be a useful tool for a better selection of extraction conditions of the aromatic fraction of interest.><0.05) by temperature and time, which was described by a kinetic fractional conversion equation and the Arrhemius model. However, principal component analysis (PCA) performed on major VC determined a differential response of VC to extraction conditions. Two distinctive groups of compounds were identified using kinetic and statistical criteria: compounds associated (GR1) and poorly associated (GR2) with the aromatic profile of peppers. Extraction of GR1 compounds was flavored at 40 ºC and 80 min; whereas for GR2, extraction was flavored at 80 ºC and 80 min. The best extraction condition of VC associated with aroma of piquin pepper was determined (40 ºC and 80 min) considering the individual effect of temperature that flavored extraction of VC within GR1. The results showed that the use of PCA can be a useful tool for a better selection of extraction conditions of the aromatic fraction of interest.

References

AOAC. (1998). Method 934.06. Official Methods of Analysis. Association of Official Analytical Chemists.

Bogusz Junior, S., Melo, A. M., Zini, C. A., Godoy, H. T. (2011). Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction. Journal of Chromatography A 1218, 3345-3350.

Bogusz Junior, S. B., Melo, A. M., Zini, C. A., Godoy, H. T. (2012). Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas. Food Research International 48, 98-107.

Chrubasik, S., Weiser, T., Beime, B. (2010). Effectiveness and safety of topical capsaicin cream in the treatment of chronic soft tissue pain. Phytotherapy Research 24, 1877-1885.

Cisneros-Pineda, O., Torres-Tapia, L. W., Gutiérrez-Pacheco, L. C., Contreras-Martín, F., González-Estrada, T., Peraza-Sánchez, S. R. (2007). Capsaicinoids quantification in chili peppers cultivated in the state of Yucatan, Mexico. Food Chemistry 104, 1755-1760.

Estrada, B., Bernal., M. A., D´ıaz, J., Pomar, F., Merino, F. (2000). Fruit development in Capsicum annuum: Changes in capsaicin, lignin, free phenolics, and peroxidase patterns. Journal of Agricultural and Food Chemistry 48, 6234-6239.

Forero, M.D., Quijano, C. E., Pino, J. A. (2009). Volatile compounds of chile pepper (Capsicum annuum L. var. glabriusculum) at two ripening stages. Flavour and Fragrance Journal 24, 25- 30.

Gahungu, A., Ruganintwali, E., Karangwa, E., Zhang, X., Mukunzi, D. (2011). Volatile compounds and capsaicinoid content of fresh hot peppers (Capsicum chinense) Scotch Bonnet variety at Red stage. Advance Journal of Food Science and Technology 3, 211-218.

Guil-Guerrero, J. L., Martínez-Guirado, C., Rebolloso-Fuentes, M., Carrique-Pérez, A. (2006). Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuum) varieties. European Food Research and Technology 224, 1-9.

Kollmannsberger, H., Rodríguez-Burruezo, A., Nitz, S., Nuez, F. (2011). Volatile and capsaicinoid composition of ají (Capsicum baccatum) and rocoto (Capsicum pubescens), two Andean species of chile peppers. Journal of the Science of Food and Agriculture 91, 1598-1611.

Kraft, H., Luna-Ruíz, J. de J., Gepts, P., (2013). A new collection of wild populations of Capsicum in Mexico and southern United States. Genetic Resources and Crop Evolution 60, 225-232.

Luning, P.A., de Rijk, T., Wichers, H. J., Roozen, J. P. (1994). Gas Chromatography, Mass Spectrometry, and Sniffing Port Analyses of Volatile Compounds of Fresh Bell Peppers (Capsicum annuum) at Different Ripening Stages. Journal of Agricultural and Food Chemistry 42, 977-983.

Maity, R., Sharma, J., Jana, N. R. (2010). Capsaicin induces apoptosis through ubiquitin-proteasome system dysfunction. Journal of Cellular Biochemistry 109, 933-942.

Mazida, M.M., Salleh, M. M., Osman, H. (2005). Analysis of volatile aroma compounds of fresh chilli (Capsicum annuum) during stages of maturity using solid phase microextraction (SPME). Journal of Food Composition and Analysis 18, 427-437.

Mohsenin N.N., (1980). Physical Properties of Plant and Animal Materials. Gordon and Breach Sci. Publ., New York.

Moreno, E., Fita, A., Gonzáles-Mas, M., Rodríguez-Burruezo, A. HS-SPME. (2012). Study of volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae 135, 87-97.

Montoya-Ballesteros, L.C., Gardea-Bejar, A., Ayala-Chávez, G.M., Martínez-Núñez, Y.Y., Robles-Ozuna, L.E., (2010). Capsaicinoids and color chiltepín (Capsicum annuum var. aviculare). Processing effect on sauces and pickles. Revista Mexicana de Ingeniería Química 9, 197-207.

Perva-Uzunalić, A., Škerget, M., Weinreich, B., Knez, Ž. (2004). Extraction of chilli pepper (var. Byedige) with supercritical CO2: Effect of pressure and temperature on capsaicinoid and colour extraction efficiency. Food Chemistry 87, 51-58.

Pino, J., Sauri-Duch, E., Marbot, R. (2006). Changes in volatile compounds of Habanero chile pepper (Capsicum chinense Jacq. cv. Habanero) at two ripening stages. Food Chemistry 94, 394-398.

Pino, J., Fuentes, V., Barrios, O. (2011). Volatile constituents of Chachucha peppers (Capsicum chinense Jacq.) grown in Cuba. Food Chemistry 125, 860-864.

Rao, T.V. R., Gol, N. B., Shah, K. K. (2011). Effect of postharvest treatments and storage temperature on the quality and shelf life of sweet peppers (Capsicum annum L.). Scientia Horticulturae 132, 18-26.

Rochín-Wong, C. S., Gámez-Meza, N., Montoya-Ballesteros, L. C., and Medina-Juárez, L. A., (2013). Effect of drying and pickling processes on antioxidant capacity of phytochemicals of chiltepín (Capsicum annuum L. var. glabriusculum). Revista Mexicana de Ingeniería Química 12, 227-239.

Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., Nuez, F. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and AromaContributing Compounds of Capsicum Fruits from the annuum-chinense-frutescens Complex. Journal of Agricultural and Food Chemistry 58, 4388-4400.

Rodríguez-del Bosque, L. (2005). Preferencia del consumidor por el chile Piquín en comparación con otros chiles en el Noroeste de México. Revista Chapingo Serie Horticultura 11, 279- 281.

Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., Welti-Chanes, J. (2014). High-pressure Processing: Kinetic Models for Microbial and Enzyme Inactivation. Food Engineering Reviews 6, 56-88.

Sousa, E. T., Rodrigues, F. M., Matins, C. C., de Oliveira, F. S., Pereira, P. A., Andrade, J. B. (2006). Multivariate optimization and HSSPME/GC-MS analysis of VOCs in red, yellow and purple varieties of Capsicum chinense sp. peppers. Microchemical Journal 82, 142-149.

Tadesse, T., Hewett, E. W., Nichols, M. A, Fisher, K. J. (2002). Changes in physicochemical attributes of sweet pepper cv. Domino during fruit growth and development. Scientia Horticulturae 93, 91-103.

Valdez-Fragoso, A., Soto-Caballero, M.C., Soria-Hernández, C.G., Valiente-Banuet, J.I., Welti-Chanes, J. y Mújica-Paz, H. (2013). Efecto de las variables de encurtido en los parámetros de transferencia de masa, estabilidad y calidad de chile piquín. Revista Mexicana de Ingeniería Química 12, 1-10.
Published
2020-01-17
How to Cite
Vázquez-Cárdenas, C., Valiente-Banuet, J., Caballero-Mata, P., Mújica-Paz, H., Rodríguez-Rodríguez, J., & Welti-Chanes, J. (2020). KINETIC AND STATISTICAL CRITERIA FOR THE SELECTION OF CONDITIONS OF EXTRACTION OF VOLATILE COMPOUNDS OF PIQUIN PEPPER (Capsicum annuum L. var. glabriusculum). Revista Mexicana De Ingeniería Química, 14(2), 231-241. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1188
Section
Food Engineering