Effect of the concentration of glycerin in the performance of chitosan membranes utilized in aqueous phase permeation

  • J.A. Galicia-Aguilar
  • M. López-Badillo
  • M.A. García-Castro
  • J.L. Varela-Caselis
  • C. Solís-Martínez
  • J. Ortega-Pérez
Keywords: Chitosan, Membrane, Glycerin, Cross-linking, Permeability


We have carried out the synthesis of a series of chitosan-based membranes by casting solution method. The membranes were synthesized from commercial chitosan and glycerin as a plasticizer, varying the concentration of glycerin to determine the concentration that allows the formation of membranes with the best physicochemical properties to retentate permeating test molecules. Formed membranes were cross-linked with sulfuric acid, and tested in the permeation of sodium chloride, saccharose and a whey protein. The physicochemical characteristics of the membrane were evaluated by the water swelling factor, viscous molecular weight and DSC. The passage of the tested molecules through the membrane and other characteristics were modified with glycerin content in the forming solution.


Ashok , M., Sajjan , H., & Mahadevappa , Y. (2015). Synthesis and characterization of GTMAC grafted chitosan membranes for the dehydration of low water content isopropanol by pervaporation. Journal of Industrial and Engineering Chemistry, 25, 151-161.
Bautista Baños, S., González Soto, R., & Ramos García , M. (2017). Physical properties of chitosan films with lemon essential oiladded and their impact on the shelf life of tomatoes (LycopersiconesculentumL.). Revista Mexicana de Ingeniería Química, 17(1), 1-11.
Bullón , J., Chaffaut, J., Belleville, M., Newman , R., & Ríos, G. (2001). Characterization and properties of supported protein membranes. Separation Science and Technology, 36(14).
Buszard, D. (1984). Theoretical Aspects of Plasticisation. In: PVC Tecnology. Springer, Dordrecht. doi:10.1007/978-94-009-5614-8_5
Chen , Z., Luo, J., Chen, X., Hang, X., Shen, F., & Wan, Y. (2016). Fully recycling dairy wastewater by an integrated isoelectric precipitation–nanofiltration–anaerobic fermentation process. Chemical Engineering Journal, 283, 476–485.
Chen, X.-G., Zheng, L., Wang, Z., Lee, C., & Park, H.-J. (2002). Molecular Affinity and Permeability of Different Molecular Weight Chitosan Membranes. Journal of Agricultural and Food Chemistry, 50(21), 5915-5918.
Cui , Z., Xiang , Y., Si , Y., Yang, M., Zhang , Q., & Zhang . (2008). Ionic interaction between sulfuric acid and chitosan membranes. Carbohydrate Polymers(73), 111-116.
Deeptangshu, S., Benu, P., Adhikari, C., & Kasapis, S. (2011). Glass-transition behaviour of plasticized starch biopolymer system modified. Food Hydrocolloids,, 25, 114-121.
Feng , Z., Shao , Z., Yao , J., Huang , Y., & Chen , X. (2009). Protein adsorption and separation with chitosan-based amphoteric membranes. Polymer, 50, 1257–1263.
Godwin, A. (2011). Plasticizers. In Applied Plastics Engineering Handbook (pp. 487–501). doi:10.1016/b978-1-4377-3514-7.10028-5
Han, Y.-J., Wang, K.-H., Lai, J.-Y., & Liu, Y.-L. (2014). Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions. Journal of Membrane Science, 463, 17-23. doi:10.1016/j.memsci.2014.03.052
Ho, Y., & McKay , G. (1998). Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans Chem., 76(Parte B).
Kolesnyk, I., Konovalova , V., Kharchenko , K., Burban , Kujawa , J., & Kujawski, W. (2020). Enhanced transport and antifouling properties of polyethersulfone membranes modified with α-amylase incorporated in chitosan-based polymeric micelles. Journal of Membrane Science.
Liu, H., Adhikari , R., Guo, Q., & Adhikari, B. (2013). Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. Journal of Food Engineering,, 16(2), 588–597.
López-Díaz, A., Ríos-Corripio, M., Ramírez-Corona, López-Malo , E., & Palou, E. (2018). Effect of short wave ultraviolet radiation on selected properties of edible films formulated with pomegranate juice and chitosan. Revista Mexicana De Ingeniería Química, 17(1), 63-73.
Marques, J., Chagas, J., Fonseca , J., & Pereira , M. (2016). Comparing homogeneous and heterogeneous routes for ionic crosslinking of chitosan membranes. Reactive and Functional Polymers, 103, 156–161.
Martínez , A., Cortez , M., Ezquerra , J., Graciano , A., Rodríguez , Z., Castillo , M., . . . Plascencia, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal Properties. Carbohydrate Polymers, 82, 305-315.
Michel, B., Rigñack , C., Rivero , J., & Covas , N. (2008). Síntesis y caracterización de hidrogeles biocompatibles interpenetrados de quitosana y poliacrilamida. CENIC, Ciencias Químicas, 39(2), 70-74.
Neto , C., Giacometti , J., Job , A., Ferreira , F., Fonseca , J., & Pereira M., . (2005). Thermal Analysis of Chitosan Based Networks. Carbohydrate Polymers, 62, 97-103.
Núñez-Gastélum, J., Rodríguez-Núñez, J., de la Rosa, L., Díaz-Sánchez, A., Alvarez-Parrilla, Martínez-Martínez, A., & Villa-Lerma, G. (2018). Screening of the physical and structural properties of chitosan-polycaprolactone films added with Moringa oleifera leaf extract. Revista Mexicana de Ingeniería Química, 18(1), 99-105.
Scott, K. (1995). Handbook of Industrial Membranes. Elseiver.
Shahidi, F., Arachchi, J., & Jeon, Y. (1999). Food applications of chitin and chitosans. Trends Food Sci. Technol, 10, 37-51.
Sivashankari , P., & Prabaharan , M. (2017). Deacetylation modification techniques of chitin and chitosan,, Volume 1. Chitosan Based Biomaterials, 1, 117-133. doi: http://dx.doi.org/10.1016/B978-0-08-100230-8.00005-4
Srinivasa , P., THaranathan, R., & Ramesh, M. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids, 21, 1113-1122.
Tharanathan , R. (2013). Biodegradable films and composite coatings: past, present and future,. Trends in Food Science & Technology, 14, 71-78.
Wang , Q., Chen , X., Liu , N., Wang , S., & Liu , C. (2006). , Protonation constants of chitosan with different molecular weight and degree of deacetylation 194–201. Carbohydrate Polymers, 65, 194–201.
Wang , X., Shen , Z., & Zhang , Q. (1996). A novel composite chitosan membrane for the separation of alcohol-water mixtures. Journal Membranes Sci, 196, 191-198.
Wang, W., Bo, S., Li, & Qin, S. (1991). Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. International Journal of Biological Macromolecules, 13(5), 281–285.
Xi-Guang , C., Li , Z., Zhen , W., Chang-Yong , L., & Hyun, J. (2002). Molecular affinity and permeability of different molecular weight chitosan membranes. J. Agric. Food Chem., 50, 5915-5918.
Zhu , J., Tian , M., Zhang , Y., Zhang , H., & ZhLiu , J. (2015). Fabrication of a novel ‘‘loose’’ nanofiltration membrane by facile blending with Chitosan–Montmorillonite nanosheets for dyes purification. Chemical Engineering Journal, 265, 184-193.
How to Cite
Galicia-Aguilar, J., López-Badillo, M., García-Castro, M., Varela-Caselis, J., Solís-Martínez, C., & Ortega-Pérez, J. (2020). Effect of the concentration of glycerin in the performance of chitosan membranes utilized in aqueous phase permeation. Revista Mexicana De Ingeniería Química, 20(1), 87-96. https://doi.org/10.24275/rmiq/Mat1198

Most read articles by the same author(s)