STRUCTURAL FEATURES OF BANANA STARCHES USING HPSEC-MALLS-RI

  • G. Méndez-Montealvo Instituto Politécnico Nacional, CICATA Querétaro
  • S.L. Rodriguez-Ambriz Instituto Politécnico Nacional, CEPROBI
  • L.A. Bello-Pérez Instituto Politécnico Nacional, CEPROBI
Keywords: starch, banana, amylose, quantification, degree of polymerization (DP), weight-average molar mass (Mw), zaveraged radius of gyration (Rz)

Abstract

An analytical method to quantify the amylose content and to characterize the structures of the banana starch molecules is reported. This study consists of two parts: Part 1 describes the individual chains present in the starch granules, as the chain-length distribution, and Part 2 characterizes the molecular structure of the starch components by high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detection (HPSECMALLS-RI). The quantification of amylose using two methods (HPSEC-RI and Concanavalin A) is in agreement with the percentage reported. In addition, the ratio Fr III/Fr. II (Fr. II represents amylopectin long B chains and Fr. III represents amylopectin A and B short chains), shows structural differences among banana starches, with more branching in Morado banana starch and less branching in Macho banana starch. A recognition that amylose has significant branching, and thus is not linear, led to the characterization of two populations of amylose: one that is highly branched and the other, which is essentially linear, as established by the HPSEC-MALLS-RI method. Morado amylose has the highest Mw of the branched starches while Macho amylose has the highest Mw and Rz values consistent with differences in the structures of banana starches.

References

Agama-Acevedo, E., Rodríguez-Ambriz, S. L., García-Suarez, F. J., Gutiérrez-Meraz, F., Pacheco-Vargas, G., Bello-Pérez, L. A. (2014). Starch isolation and partial characterization of commercial cooking and dessert banana cultivars growing in Mexico. Starch/Stärke 66, 337-344.

Agama-Acevedo, E., Bello-Perez, L.A., PachecoVargas, G., Evangelista-Lozano, S. (2015). Inner structure of plantain starch granules by Surface chemical gelatinization: morphological, physicochemical and molecular properties. Revista Mexicana de Ingeniería Química 14, 73-80.

Akai, H., Yokobayashi, K., Misaki, A., Harada, T. (1971). Structural analysis of amylopectin using Pseudomonas isoamylase. Biochimica et Biophysica Acta 252, 427-431.

Bello-Pérez, L. A., Roger, P., Baud, B., Colonna, P. (1998). Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. Journal of Cereal Science 27, 267-278.

Bello-Perez, L. A., Rodriguez-Ambriz, S. L., Agama-Acevedo, E., Sanchez-Rivera, M. M. (2009). Solubilization effects on molecular weights of amylose and amylopectins of normal maize and barley starches. Cereal Chemistry 86, 701-705.

Biliaderis, C. G., Grant, D. R., Vose, J. R. (1981). Structural characterization of legumes starches. I. Studies on amylose, amylopectin, and betalimit dextrins. Cereal Chemistry 58, 496-502.

Cameron, D. K., Wang, Y. J. (2005). A better understanding of factors that affect the hardness and stickiness of long-grain rice. Cereal Chemistry 82, 113-119.

De la Rosa-Millan, J., Agama-Acevedo, E., Osorio-Diaz, P., Bello-Perez, L.A. (2014). Effect of cooking, annealing and storage on starch digestibility and physicochemical characteristics of unripe banana flour. Revista Mexicana de Ingeniería Química 14, 151-163.

Fishman, M. L., Rodriguez, L., Chau, H. K. (1996). Molar masses and sizes of starches by highperformance size-exclusion chromatography with on-line multi-angle laser light scattering detection. Journal of Agricultural Food Chemistry 44, 3182-3188.

Fitzgerald, M. A., Bergman, C. J., Resurreccion, A. P., Möller, J., Jimenez, R., Reinke, R. F., Martin, M., Blanco, P., Molina, F., Chen, M-H., Kuri, V., Romero, M. V., Habibi, F., Umemoto, T., Jongdee, S., Graterol, E., Reddy, K. R., Bassinello, P. Z., Sivakami, R., Rani, N. S., Das, S., Wang, Y-J., Indrasari, S. D., Ramli, A., Ahmad, R., Dipti, S. S., Xie, L., Lang, N. T., Singh, P., Toro, D. C., Tavasoli, F., Mestres, C. (2009). Addressing the dilemmas of measuring amylose in rice. Cereal Chemistry 86, 492-498.

Gallant, D. J., Bouchet, B., Buléon, A., Pérez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. European Journal of Clinical Nutrition 46, S3-S16.

Gibson, T. S., McCleary, B. V., Solah, V. A. (1995). Con A revisited - a simplified assay to measure amylose in cereal starches. In: Williams, Y.A., Wrigley, C.W. (Eds.), Proc. 45th Australian Cereal Chemistry Conference. Pp. 162- 167.RACI: Melbourne.

Gibson, T. S., Solah, V. A., McCleary, B. V. (1997). A procedure to measure amylose in cereal starches and flours with concanavalin A. Journal of Cereal Science 25, 111-119.

Gilbert, R. M., Witt, T., Hasjim, J. (2013). What is being learned about starch properties form multiple-level characterization. Cereal Chemistry 90, 312-325.

Hanselmann, R., Burchard, W., Ehrat, M., Widmer, H. M. (1996). Structural properties of fractionates starch polymers and their dependence on the dissolution process. Macromolecules 29, 3277-3282.

Kasemsuwan, T., Jane, J-L., Schnable, P., Stinard, P., Robertson, D. (1995). Characterization of the dominant mutant amylose-extender (ael-5180) maize starch. Cereal Chemistry 72, 457-464.

Mestres, C., Matencio, F., Pons, B., Yajid, M., Fliedel, G. V. (1996). A rapid method for the determination of amylose content by using differential-scanning calorimetry. Starch/St ¨arke 48, 2-6.

Morrison, W. R., Lagnilet, B. (1983). An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. Journal of Cereal Science 1, 9-20.

Perez, S., Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/ St¨arke 62, 389-420.

Rivas-Gonzalez, M., Zamudio-Flores, P.B., Bello-Perez, L.A. (2009). Efecto del grado de acetilación en las características morfológicas y fisicoquímicas del almidón de plátano. Revista Mexicana de Ingeniería Química 8, 291-297.

Roger, P., Tran, V., Lesec, J., Colonna, P. (1996). Isolation and characterisation of single chain amylose. Journal of Cereal Science 24, 247- 262.

Rolland-Sabate, A., Colonna, P., MendezMontealvo, M. G., Planchot, V. (2007). Branching features of amylopectins and glycogen determined by asymmetrical flow field flow fractionation coupled with multiangle laser light scattering. Biomacromolecules 8, 2520- 2532.

Suortti. T., Gorenstein, M. V., Roger, P. (1998). Determination of the molecular mass of amylose. Journal of Chromatography A 828, 515-521.

Vilaplana, F., Hasjim, J., Gilbert, R. G. (2012). Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers 88, 103-111.

Ward, R. M., Gao, Q., de Bruyn, H., Gilbert, R. G., Fitzgerald, M. A. (2006). Improved methods for the structural analysis of the amylose-rich fraction from rice flour. Biomacromolecules 7, 866-876.

Wyatt, P. J. (1993). Light scattering and the absolute characterization of macromolecules-Review. Analytica Chimica Acta 272, 1-40.
Published
2020-01-20
How to Cite
Méndez-Montealvo, G., Rodriguez-Ambriz, S., & Bello-Pérez, L. (2020). STRUCTURAL FEATURES OF BANANA STARCHES USING HPSEC-MALLS-RI. Revista Mexicana De Ingeniería Química, 14(2), 293-302. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1203
Section
Food Engineering

Most read articles by the same author(s)