• G.M. Olguín-Arteaga Universidad Autónoma del Estado de Hidalgo, Área Académica de Química
  • M. Amador-Hernández Universidad Autónoma del Estado de Hidalgo, Área Académica de Química
  • A. Quintanar Guzmán Adriana Consulting Services Incorporated
  • F. Díaz-Sánchez FRITOS TOTIS SA. de CV.
  • I. Sánchez-Ortega Universidad Autónoma del Estado de Hidalgo, Área Académica de Química
  • A. Castañeda-Ovando Universidad Autónoma del Estado de Hidalgo, Área Académica de Química
  • R. Avila-Pozos Universidad Autónoma del Estado de Hidalgo, Área Académica de Química
  • E.M. Santos-López Universidad Autónoma del Estado de Hidalgo, Área Académica de Química


Corn snack industry has empirically found that big and abundant blisters are developed when cornstarch is highly gelatinized, because of milling processes. This defect affects mainly the texture and appearance of the snacks. In the present study, gelatinization enthalpy by DSC was measured in grits, corn meals and nixtamalized corn flours, and correlated with Water Absorption Index (WAI) and Water Soluble Index (WSI), to generate an enthalpy prediction model. Results indicated that the more intense the process of milling was (lower particle diameter), the lower the gelatinization enthalpy values were. Grits presented a gelatinization enthalpy mean of 8.05 ± 1.22 J/g, corn meals of 5.33 ± 1.87 J/g and nixtamalized corn flours ranged between 2.35 y 3.28 J/g. The gelatinization enthalpy was significantly correlated with WAI and WSI (- 0.847 y - 0.763, respectively). A predictive model was successfully generated to predict gelatinization enthalpy in grits, corn meals and flours.


Anderson, R. A., Conway, H. F., Pfeifer, V. F. y Griffin, E. L. (1969). Gelatinization of corn grits by roll and extrusion cooking. Cereal Science Today 14, 4-12.

AOAC. (1995). Official Methods of Analysis of the Association of Official Analytical Chemists International (16th ed., Vol. II). (P. Cunniff, ed)

Bressani, R., Turcios, J. C., Colmenares de Ruiz, A. S. y de Palomo, P. P. (2004). Effect of processing conditions on phytic acid, calcium, iron and zinc contents of lime-cooked maize. Journal of Agricultural and Food Chemistry 52, 1157-1162.

Cameron, D. K. y Wang, Y. J. (2006). Application of protease and high-intensity ultrasound in corn starch isolation from degermed corn flour. Cereal Chemistry 83, 505-509.

Chen, J. J., Lii, C.Y. y Lu, S. (2003). Physicochemical and morphological analyses on damaged rice starches. Journal of Food and Drug Analysis 11, 283-289.

Cornejo-Villegas, M.A., Gutiérrez-Cortez, E., Rojas-Molina, I., Del Real-Lopez, A., Zambrano-Zaragoza, M. L., Martínez-Vega, V. y Rodríguez-García, M. E. (2013). Physicochemical, morphological, and pasting properties of nixtamalized flours from quality protein maize and its particle distribution. LWTFood Science and Technology 53, 81-87.

Dhital, S., Shrestha, A. K., Flanagan, B. M., Hasjim, J. y Gidley, M. J. (2011). Cryomilling of starch granules leads to differential effects on molecular size and conformation. Carbohydrate Polymers 84, 1133-1140.

Estrada-Girón, Y., Aguilar, J., Morales-del Rio, J. A., Valencia-Botin, A. J., Guerrero-Beltrán, J. A., Martínez-Preciado, A. H., Macías, E. R., Soltero, J. F. A., Solorza-Feria, J. y Fernández, V. V. A. (2014). Effect of moisture content and temperature, on the rheological, microstructural and thermal properties of masa (dough) from a hybrid corn (Zea mays sp.) variety. Revista Mexicana de Ingenería Química 13, 429-446.

Fernández-Muñoz, J. L., San Martín-Martínez, E., Díaz-Gongora, J. A. I., Calderón, A., Alvarado-Escobar, A. y Ortiz-Cárdenas, H. (2007). Evaluation of physicochemical changes in nixtamalized Maize flours as a function of steeping time. Journal of Food Engineering 78, 972-977.

Fernández-Muñoz, J. L., Acosta-Osorio, A. A., Zelaya-Angel, O. y Rodríguez-García, M. E. (2011). Effect of calcium content in the corn flour on RVA profiles. Journal of Food Engineering 102, 100-103.

González, R., Reguera, E., Figueroa, J.M. y Sánchez-Sinencio, F. (2005). On the nature of the Ca binding to the hull of nixtamalized corn grains. LWT-Food Science and Technology 38, 119-124.

Hasjim, J., Li, E. y Dhital, S. (2013). Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydrate Polymers 92, 682-690.

Kohyama, K. y Sasaki, T. (2006). Differential scanning calorimetry and a model calculation of starches annealed at 20 and 50 °C. Carbohydrate Polymers 63, 82-88.

Liu, H., Xie, F., Yu, L., Chen, L. y Lin, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science 34, 1348-1368.

Liu, T. Y., Ma, Y., Yu, S. F., Shi, J. y Xue, S. (2011). The effect of ball milling treatment on structure and porosity of maize starch granule. Innovative Food Science and Emerging Technologies 12, 586-593.

Malumba, P., Janas, S., Roiseux, O., Sinnaeve, G., Masimango, T., Sindic, M., Deroanne, C. y Bera, F. (2010). Comparative study of ´ the effect of drying temperatures and heatmoisture treatment on the physicochemical and functional properties of corn starch. Carbohydrate Polymers 79, 633-641.

Méndez-Montealvo, G., García-Suarez, F. J., Paredes-López, O. y Bello-Pérez, L. A. (2008). Effect of nixtamalization on morphological and rheological characteristics of maize starch. Journal of Cereal Science 48, 420-425.

Miller, J. N. y Miller, J. C. (2002). Estadística y quimiometría para química analítica. Madrid: PEARSON EDUCACION.

Mondragón, M., Bello-Pérez, L. A., Agama, E., Melo, A., Betancurt-Ancona, D. y Peña, J. L. (2004). Effect of nixtamalization on the modification of the crystalline structure of maize starch. Carbohydrate Polymers 55, 411- 418.

Morrison, W. R. y Tester, R. F. (1994). Properties of damaged starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration. Journal of Cereal Science 20, 69-77.

Osorio-Díaz, P., Agama-Acevedo, E., Bello-Pérez, L. A., Islas-Hernández, J. J., Gómez-Montiel, N. O. y Paredes-López, O. (2011). Effect of endosperm type on texture and in vitro starch digestibility of maize tortillas. LWT-Food Science and Technology 44, 611-615.

Rodríguez-Miranda, J., Ramírez-Wong, B., Vivar-Vera, M. A., Solís-Soto, A., Gómez-Aldapa, C. A., Castro-Rosas, J., Medrano-Roldan, H. y Delgado-Licon, E. (2014). Effect of bean flour concentration (Phaseolus vulgaris L.), moisture content and extrusion temperature on the functional properties of aquafeeds. Revista Mexicana de Ingeniería Química 13, 649-663.

Ruiz-Gutiérrez, M. G., Quintero-Ramos, A., Meléndez-Pizarro, C. O., Lardizábal-Gutiérrez, D., Barnard, J., Márquez-Meléndez, R. y Talamas-Abbud, R. (2010). Changes in mass transfer, thermal and physicochemical properties during nixtamalization of corn with and without agitation at different temperatures. Journal of Food Engineering 98, 76-83.

Sandhu, K. S., Singh, N. y Kaur, M. (2004). Characteristics of the different corn types and their grain fractions: physicochemical, thermal, morphological, and rheological properties of starches. Journal of Food Engineering 64, 119- 127.

Santos, E. M., Quintanar-Guzman, A., Solorza-Feria, J., Sanchez-Ortega, I., Rodriguez, J. A., Wang, Y. J. (2014). Thermal and rheological properties of masa from nixtamalized corn subjected to a sequential protein extraction. Journal of Cereal Science 60, 490-496.

Sefa-Dedeh, S., Cornelius, B., Sakyi-Dawson, E. y Ohene Afoakwa, E. (2004). Effect of nixtamalization on the chemical and functional properties of maize. Food Chemistry 86, 317- 324.

Schirmer, M., Höchstötter, A., Jekle, M., Arendt, E. y Becker, T. (2013). Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids 32, 52-63.

Sikora, M., Kowalski, S., Krystyjan, M., Ziobro, R., Wrona, P., Curic, D. y LeBail, A. (2010). Starch gelatinization as measured by rheological properties of the dough. Journal of Food Engineering 96, 505-509.

Singh, N., Singh, J., Kaur, L., Sodhi, N. S. y Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry 81, 219-231.

Singh, N., Bedi, R., Garg, R., Garg, M. y Singh, J. (2009). Physico-chemical, thermal and pasting properties of fractions obtained during three successive reduction milling of different corn types. Food Chemistry 113, 71-77.

Yu, L. y Christie G. (2001). Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydrate Polymers 46, 179- 84.
How to Cite
Olguín-Arteaga, G., Amador-Hernández, M., Quintanar Guzmán, A., Díaz-Sánchez, F., Sánchez-Ortega, I., Castañeda-Ovando, A., Avila-Pozos, R., & Santos-López, E. (2020). CORRELATION BETWEEN GELATINIZATION ENTHALPIES, WATER ABSORPTION INDEX AND WATER SOLUBLE INDEX IN GRITS, CORN MEALS AND NIXTAMALIZED CORN FLOURS. Revista Mexicana De Ingeniería Química, 14(2), 303-310. Retrieved from
Food Engineering