COMPARATIVE PERFORMANCE ANALYSIS OF DIFFERENT LINEAR CONTROLLERS TUNED FOR SEVERAL CHOLETTE’S BIOREACTOR STEADY STATES USING MULTI-CRITERIA DECISION MAKING TECHNIQUES

  • A. Rodríguez-Mariano
  • G. Reynoso-Meza
  • D.E. Paramo-Calderón
  • E. Chávez-Conde
  • M.A. García-Alvarado
  • J. Carrillo-Ahumada
Keywords: Cholette's bioreactor, multiplicity of states, linear control, steady states, PROMETHEE

Abstract

In this work a comparative performance analysis of different linear controllers tuned for several Cholette´s bioreactor models at different steady states was realized. To this end the performance indexes IAE, ISE, ITAE, ISU and IADU were tailored for a multi-criteria decision techniques (MCDM) reformulation using PROMETHEE analysis. The results show the feasibility of formulated criteria based on performance distance approach; providing a method for evaluating the performance of linear controllers used on stable and unstable systems with multiple steady states.

References

Alfaro, V. M. y Vilanova, R. (2012). Model-reference robust tuning of 2DoF PI controllers for firstand second-order plus dead-time controlled processes. Journal of Process Control 22, 359- 374.

Behzadian, M., Kazemzadeh, R.B., Albadvi, A., y Aghdasi, M. (2009). PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research 200 (2010), 198-215.

Bevrani, H. e Hiyama, T. (2007). Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm. International Journal of Control, Automation, and Systems 5 (4), 117-127.

Blasco, X., Herrero, J., Sanchis, J. y Martínez, M. (2008). A new graphical visualization of ndimensional Pareto front for decision making in multiobjective optimization. Information Sciences 178 (20), 3908-3924.

Bonissone, P.P., Subbu, R. y Lizzi, J. (2009). Multicriteria decisión making (MCDM): a framework for research and applications. Computational Intelligence Magazine, IEEE 4(3), 48-61.

Brans, J.P., Mareschal, B. y Vincke, P. (1984). PROMETHEE: A New Family of Outranking Methods in MCDM. En: Operational Research, IFORS 84, (J.P. Brans), Pp. 477-490. North Holland, Amsterdam.

Carrasco, D.S. y Salgado, M.E. (2009). ITSE optimal controller design and achievable performance bounds. International Journal of Control 82(11), 2115-2126.

Carrillo-Ahumada, J., Paramo-Calderón, D.E., Aparicio-Saguilan, A., Rodríguez-Jimenes, G.C. y García-Alvarado, M.A. (2014). Approach of a measurement of linearized representation of a nonlinear system. Application to (bio)chemical reactors. Revista Mexicana de Ingeniería Química 13(2), 631- 647.

Carrillo-Ahumada, J., Reynoso-Meza, G., GarcíaNieto, S., Sanchis, J. y García-Alvarado, M.A. (2015). Sintonización de controladores Pareto- óptimo robustos para sistemas multivariables. Aplicación en un helicóptero de 2 grados de liberta. Revista Iberoamericana de Automática e Informática Industrial (Artículo aceptado).

Carrillo-Ahumada, J., Rodríguez-Jiménes, G.C. y García-Alvarado, M.A. (2011). Tuning optimalrobust linear MIMO controllers of chemical reactors by using Pareto optimality. Chemical Engineering Journal 174, 357-367.

Chidambaram, M. y Reddy, G.P. (1996). Nonlinear control of systems with input and output multiplicities. Computer & Chemical Engineering 20(3), 295-299.

Duarte-Mermoud, M.A. y Prieto, R.A. (2004). A Performance index for quality response of dynamical systems. ISA Transactions 43, 133- 151.

Dubois, D. y Prade, H. (1988). Possibility Theory. Editorial Plenum Press., New York, U.S.A.

Dubois, D., Prade, H. y Sabbadin, R. (2013). Qualitative Decision Theory with Sugeno Integrals. Presentación San Francisco: 14th Conference on Uncertainty in AI, 121-128.

Ferramosca, A., Gruber, J.K., Limon, D. y Camacho, E.F. (2013). Control predictivo para seguimiento de sistemas no lineales. Aplicación a una planta piloto. Revista Iberoamericana de Automática e Informática Industrial 10, 18-29.

Figueira, J., Greco, S. y Ehrgott, M. (2005). Multiple criteria decisión analysis: State of the art surveys. Editorial Salvatore, New York. U.S.A.

García-Alvarado, M.A. y Ruíz-Lopez, I.I. (2010). A design method for robust and quadratic optimal MIMO linear controllers. Chemical Engineering Science 65(1), 3431-3438.

García-Alvarado, M.A., Ruíz-López, I.I. y Torres- Ramos, T. (2005). Tuning of multivariate PID controllers based on characteristic matrix eigenvalues, Lyapunov functions and robustness criteria. Chemical Engineering Science 60, 897- 905.

Hernández-Pérez, M.A., del Muro-Cuéllar, B., Cortes-Rodríguez, D. y Araujo-Vargas, I. (2013). Stabilization of third-order systems with possible complex conjugate poles and time delay. Revista Mexicana de Ingenier´ıa Química 12(2), 351-360.

Huang, H.P. y Chen, C.C. (1999). Auto tuning of PID controllers for second order unstable systems having dead time. Journal of Chemical Engineering of Japan 32, 568-579.

Ibarra-Junquera, V. y Rosu, H.C. (2007). PIcontrolled bioreactor as a generalized Lienard system. Computers & Chemical Engineering 31, 136-141.

Inselberg, A. (1985). The plane with parallel coordinates. En: The Visual Computer, Pp. 69-91. Springer Ed. U.S.A.

Inselberg, A. (1998). Visual data mining with parallel coordinates. Computational Statistics 13(1), 47-64.

Jhunjhunwala, M.K., y Chidambaram, M. (2001). PID controller tuning for unstable systems by optimization method. Chemical Engineering Communications 185, 91-113.

Kollat, J.B. y Reed, P. (2007). A framework for visually interactive decision-making and design using evolutionary multi-objective optimization (VIDEO). Environmental Modelling & Software 22(12), 1691-704.

Kumar, V.R. y Kulkarni, B.D. (1994). On the operation of a bistable CSTR: a strategy employing stochastic resonance. Chemical Engineering Science 49(16), 2709-2713.

Liou, C.T. y Chien, Y.S. (1991). The effect of nonideal mixing on input multiplicities in a CSTR. Chemical Engineering Science 46(8), 2113-2116.

Lo, S.N. y Cholette, A. (1978). Performance of a cascade of imperfectly mixed reactors for simple isothermal and exothermic reactions. Chemical Engineering Science 33(8), 1031- 1041.

Lo, S.N. y Cholette, A. (1983). Multiplicity of conversion in a cascade of imperfectly stirred tank reactors. Chemical Engineering Science 38(3), 367-372.

Lotov, A. y Miettinen, K. (2008). Visualizing the Pareto frontier. En: Multiobjective Optimization, (J. Branke, K. Deb, K. Miettinen, y R. Slowinski, eds.), Pp. 213-243. Springer, Berl´ın.

Marquéz-Rubio, J.F., del-Muro-Cuéllar, B., Velasco- Villa, M. y Álvarez-Ramírez, J. (2010). Control basado en un esquema observador para sistemas de primer orden con retardo. Revista Mexicana de Ingeniería Química 9(1), 43-52.

Miettinen, K.M. (1998). Nonlinear multiobjective optimization. Editorial Kluwer Academic Publishers.

Morari, M., Zafiriou, E. y Economou, C.G., (1988). Robust Process Control. Editoral SpringerVerlag, New Jersey. Normey-Rico J.E. y Camacho E.F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control 19(1), 38-47.

Raffo-Duran, J., Figueredo-Cardero, A. y Dustet- Mendoza, J.C. (2014). Características de la hidrodinámica de un biorreactor industrial tipotanque agitado. Revista Mexicana de Ingeniería Química 13(3), 823-839.

Rajinikanth, V. y Latha, K. (2012). Tuning and retuning of PID controller for unstable systems using evolutionary algorithm. ISRN Chemical Engineering 2012, 1-10.

Reynoso-Meza, G, Blasco, X., Sanchis, J. y Martínez, M. (2014). Controller tuning by means of evolutionary multiobjective optimization: current trends and applications. Control Engineering Practice 28, 58-73.

Reynoso-Meza, G., Blasco, X., Sanchis, J. y Herrero, J.M. (2013a). Comparison of design concepts in multi-criteria decision-making using level diagrams. Information Sciences 221, 124-141.

Reynoso-Meza, G., García-Nieto, S., Sanchis, J., y Blasco, X. (2013b). Controller Tuning by Means of Multi-Objective Optimization Algorithms: A Global Tuning Framework IEEE Transactions On Control Systems Technology 21(2), 445-458.

Reynoso-Meza, G., Sanchis, J., Blasco, X. y Martínez, M. (2013c). Algoritmos evolutivos y su empleo en el ajuste de controladores del tipo PID: estado actual y perspectivas. Revista Iberoamericana de Automática e Inform ática Industrial 10, 251-268.

Salgado, M.E., Oyarzun, D.A. y Silva, E.I. (2007). H2 optimal ripple-free deadbeat controller design. Automatica 43(11), 1961-1967.

Sarraf, A.Z., Mohaghar, A. y Bazargani, H. (2013) Developing TOPSIS method using statistical normalization for selecting Knowledge management strategies Journal of Industrial Engineering and Management 6(4) 860-875.

Shinskey, F.G. (1988). Process control systems: Application, design, and tuning. Editorial McGraw-Hill, New York.

Sivaramakrishnan, S., Tangirala, A.K. y Chidambaram, M. (2008). Sliding mode controller for unstable systems. Chemical & Biochemical Engineering Quarterly 22(1) 41-47.

Smith, C.A. y Corripio, A.B. (1985). Principles and Practice of Automatic Process Control. Editorial John Wiley Sons, New York, U.S.A

Sree, R.P., y Chidambaram, M. (2002). Identification of unstable transfer model with a zero by optimization method. Journal of the Indian Institute of Science 82, 219-225.

Sree, R.P., y Chidambaram, M. (2003a). Control of unstable bioreactor with dominat unstable zero. Chemical & Biochemical Engineering Quarterly 17(2), 139-145.

Sree, R.P., y Chidambaram, M. (2003b). A simple method of tuning PI controllers for unstable systems with zero. Chemical & Biochemical Engineering Quarterly 17(3), 207-212.

Sree, R.P., y Chidambaram, M. (2005). Set point weighted PID controllers for unstable systems. Chemical Engineering Communications 193, 1- 13.

Sun, X. y Li, Y. (2010). Evaluation of Control System Performance Using Multiple Criteria Decision Making Techniques 49th IEEE Conference on Decision and Control Atlanta, 15-17.

van Heerden, C. (1953). Autothermic processesProperties and reactor design. Industrial and Engineering Chemistry 45(6), 1242-1247.

Vargas-González, S., Carrillo-Ahumada, J., Rodríguez-Jimenes, G.C. y García-Alvarado, M.A. (2013). Relation between First Order Dynamic Parameters with Pi Control Parameters in Nash Equilibrium. Mechatronics, Electronics and Automotive Engineering (ICMEAE), 2013 International Conference on, 12 3-126.

Wang, H. (2002). Minimum entropy control of nongaussian dynamic stochastic systems. IEEE Trans. Automatic Control 47(2), 398-403.

Yoon, K.P. y Hwang, C.L. (1995). Multiple Attribute Decision Making: An Introduction. Editorial Sage, California.

Yue, H. y Wang, H. (2003). Minimum entropy of closed-loop tracking errors for dynamic stochastic systems. IEEE Trans. Automatic Control 48(1), 118-122
Published
2020-01-25
How to Cite
Rodríguez-Mariano, A., Reynoso-Meza, G., Paramo-Calderón, D., Chávez-Conde, E., García-Alvarado, M., & Carrillo-Ahumada, J. (2020). COMPARATIVE PERFORMANCE ANALYSIS OF DIFFERENT LINEAR CONTROLLERS TUNED FOR SEVERAL CHOLETTE’S BIOREACTOR STEADY STATES USING MULTI-CRITERIA DECISION MAKING TECHNIQUES. Revista Mexicana De Ingeniería Química, 14(1), 167-204. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1231
Section
Simulation and control

Most read articles by the same author(s)