STRENGTH ENHANCEMENT OF SODA-LIME SILICA GLASS USING ION EXCHANGE PROCESS

  • L.D. García Universidad Autónoma de Nuevo León. Facultad de Ciencias Químicas
  • F.J. Garza-Méndez Universidad Autónoma de Nuevo León. Facultad de Ciencias Químicas
  • S.M. de la Parra-Arciniega Universidad Autónoma de Nuevo León. Facultad de Ciencias Químicas
  • J. Loredo-Murphy Universidad Autónoma de Nuevo León. Facultad de Ciencias Químicas
  • E.M. Sánchez Universidad Autónoma de Nuevo León. Facultad de Ciencias Químicas
Keywords: ion-exchange, soda lime silica glass, surface enhancement, brittleness, scaling factor

Abstract

This work presents brittleness reduction and flexural strength increase due to composition change on a soda lime silicate (SLS) glass and further improvement was achieved by chemical tempering process. It was possible to predict and prove the effect of composition variation on the index of brittleness through Vickers indentation technique. Some glasses were subjected to ion-exchange process where flexural strength was tested. A selected composition was evaluated varying the chemical strengthening time. Also, the result of a statistical topometric analysis of fracture surface of the selected glass composition with and without ionic exchange treatment is reported.

References

Albarrán, J., Flores, O., Martínez, L., Campillo, B., Sánchez, E. and Ángeles, A. (2006). Properties of Reinforced Glass with Crystalline Particles. Materials and Manufacturing Processes 21, 115-119.

Bouchaud, E. (1997). Scaling properties of cracks. Journal of Physics: Condensed Matter, 9, 4319- 4344.

Carturan, G., Khandelwal, N., Tognana, L. and Sglavo, V. M. (2007). Strengthening of sodalime-silica glass by surface treatment with solgel silica. Journal of Non-Crystalline Solids 353, 1540-1545.

Chavez-Guerrero, L., Garza, F. J., Hinojosa M. (2010) Scaling exponents for fracture surfaces in opal glass. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing A527,6474, 22-25.

Deriano, S., Rouxel, T., LeFloch, M. and Beuneu, B. (2004). Structure and mechanical properties of alkali-alkali earth-silicate glasses. Physics and Chemistry of Glasses 45, 37-44.

Duygy Guldiren, Ipek Erdem, Shheyla Aydin. (2016). Influence of silver and potassium ion exchange on physical and mechanical properties of soda lime glass. Journal of Non-Crystalline Solids 441, 1-9.

Fluegel, A. (2007). Glass viscosity calculation based on a global statistical modeling approach. Glass Technology: European Journal of Glass & Science Technology A, 48, 13-30.

Fluegel, A. (2008). Global model for calculating room-temperature glass density from the composition. Journal of the American Ceramic Society 90, 2622-2625.

Gy, R. (2008). Ion Exchange for Glass. Materials Science & Engineering B: Advanced Functional Solid State Materials 149, 159-165.

Ito, S. (2004). Structural study on mechanical behavior of glass. Journal of the Ceramic Society of Japan 112, 447-485.

Kim, S. (1983). Mechanism of alumina effect on ionexchange strenghthening of glass. M.S. thesis, Alfred University.

Mallik, K. K. and Holland, D. (2005). Strengthening of container glasses by ion-exchange dip coating. Journal of Non-Crystalline Solids 351, 2524-2536.

Marek Patschger and Christian Russel (2016). ¨ Strengthening of soda-lime-silica glass by ion exchange using an adherent potassium salt coating. Glass Technology: European Journal of Glass Science and Technology Part A 57, 6- 14.

Mattos, L. (1999). Ion Exchange of Mixed-alkali glasses. Ph.D. thesis, Alfred University.

Olagnon, C., Chevalier, J. and Pauchard, V. (2006). Global description of crack propagation in ceramics. Journal of the European Ceramic Society 26, 3051-3059.

Pedone, A., Malavasi, G., Menziani, M. C., Segre, U. and Cormack, A. N. (2008). Role of the magnesium in soda-lime glasses: Insight into structural, Transport, and Mechanical properties through computer simulations. Journal of Physics and Chemistry C 112, 11034-11041.

Roy, R., Sarkar, B. K., Rana, A. K. and Bose, N. R. (2001). Impact fatigue behavior of carbon fibrereinforced vinylester resin composites. Bulletin of Materials Science 24, 79-86.

Sánchez-López, J. L., Ruiz-Martínez, R.S., Alonso-Martínez F., Ancheyta-Juarez, J. (2008). Study of bed expansion-contraction phenomenon in ebullated-bed reactors based on dimensional analysis and model theory. Revista Mexicana de Ingeniería Química 7, 113-122.

Sehgal, J., Nakao, Y., Takahashi, H. and Ito, S. (1995). Brittleness of glasses by indentation. Journal of Materials Science Letters 14, 167- 169.

Sehgal, J. and Ito, S. (1998). A new lowbrittleness glass in the soda-lime-silica glass family. Journal of the American Ceramic Society, 81, 2485-2488.

Sehgal, J., and Ito, S. (1999). Brittleness of glass. Journal of Non-Crystalline Solids 253, 126-132.

Sglavo, V. M., Prezzi, A. and Alessandrini, M. (2004). Processing of glasses with engineered stress profiles. Journal of Non-Crystalline Solids 344, 73-78.

Sinton, C. W., LaCourse, W. C. and O’Connell, M. J. (1999). Variations in K+ -Na+ ion exchange depth in commercial and experimental float glass compositions. Materials Research Bulletin 34, 2351-2359.

Soto-Borbón, M. A., Sánchez-Corrales, V. M., Trujillo-Camacho, M. E. (2014). Characterization of TiO2/Alginate screen printing films. Revista Mexicana de Ingeniería Química 13, 227-236.

Suszynska, M. and Szmida, M. (2008). Microhardness and some fracture related problems in copper doped soda lime silica glass. Optica Applicata 38, 245-250.

Tartivel, R., Reynaud, E., Grasset, F., Sangleboeuf, J. C. and Rouxel, T. (2007). Superscratch-resistant glass by means of a transparent nanostructured inorganic coating. Journal of Non-Crystalline Solids 353, 108-110.

Yamane, M. and Mackenzie, J. D. (1974). Vicker’s Hardness of glass. Journal of Non-Crystalline Solids 15, 153-164.
Published
2020-01-27
How to Cite
García, L., Garza-Méndez, F., de la Parra-Arciniega, S., Loredo-Murphy, J., & Sánchez, E. (2020). STRENGTH ENHANCEMENT OF SODA-LIME SILICA GLASS USING ION EXCHANGE PROCESS. Revista Mexicana De Ingeniería Química, 15(2), 633-642. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1240