• J. Cruz-Salgado Universidad Politécnica del Bicentenario
  • S. Alonso-Romero Centro de Innovación Aplicada en Tecnologías Competitivas
  • A. Estrada-Monje Centro de Innovación Aplicada en Tecnologías Competitivas
  • R. Zitzumbo-Guzman Centro de Innovación Aplicada en Tecnologías Competitivas
Keywords: wood plastic composite, polyethylene terephthalate, mixture experiments


A D-optimal mixture experiment is described in this paper to determine the optimal formulation of a PET-wood composite with: polyethylene terephthalate as a polymer matrix, wood flour as filler and a coupling agent. The formulation was developed in function of three variable responses: tensile, flexural and compressive strength. Three mathematical models were fitted and the relation between the composite components relative amount and their mechanical properties was described. By analysis of variance we determine the components with highest effect over the responses. The formulation that simultaneously optimizes the mechanical properties of the composite was determined through a desirability function.


Alas, S. J. (2014). Estudio del efecto de sitios inertes en la reacción CO+O2 en Pt(100) por simulaciones de monte carlo dinámico. Revista Mexicana de Ingeniería Química 13, 811-821.

ASTM. (2008). Standard Test Method for Tensile Properties of Plastics. Designation: D, 638-08.

Chatree, H., Thanate, R., and Wiriya, T. (2014). Optimizing the formulation of polypropylene and rubberwood flour composites for moisture resistance. Journal of Reinforced Plastics and Composites 0, 1-14.

Clemons, C. (2002). Wood-plastic composites in the United States- The interfacing of two industries. Forest Products Journal 25, 10-18.

Cornell, J. A. (1990). Experiments With Mixtures, (2nd ed.)., New York: Wiley.

Cruz-Salgado, J., Alonso-Romero, S., and Domínguez-Domínguez, J. (2015). Optimization of the Tensile and Flexural Strength of a WoodPET Composite. Ingeniería Investigación y Tecnología 16, 105-112.

Herrmann, A., Nickel, J., and Riedel, U. (1998). Construction materials based upon biologically renewable resources-from components to finished parts. Polymer Degradation Stability 59, 251-61.

Humberto, G. P., and Román, D. L. (2015). Análisis y Diseño de Experimentos. México: Mc Graw-Hill.

Jun, Z., Xiang-Ming, W., Jian-Min, C., and Kai, Z. (2008). Optimization of processing variables in wood-rubber composite panel manufacturing technology. Bioresource Technology 99, 2384- 2391.

Matuana, L., and Mengeloglu, F. (2002). Manufacture of rigid PVC/wood-flour composite foams using moisture contained in wood as foaming agent. Journal of Vinyl Addit Technology 8, 264-270.

Montgomery, D. (2009). Design and Analysis of Experiments. EUA: Wiley & Sons.

Rachel, T. J., Douglas, C. M., and Bradley, A. (2011). An Expository Paper on Optimal Design. Quality Engineering 23, 287-301.

Raymond, H. M., Douglas, C. M., and Christine, M. A.-C. (2009). Computer-Generated Designs in RSM Response Surface Methodology: Process and Product Optimization Using Designed Experiments. EUA: Wiley

Soto-Borbón, M.A., Sánchez-Corrales, V.M., Trujillo-Camacho, M.E. (2014). Caracterización de películas serigráficas de TiO2/Alginato. Revista Mexicana de Ingeniería Química 13, 227-236.

Stark, N., and Matuana, L. (2003). Ultraviolet weathering of photostabilized wood-flourfilled high-density polyethylene composites. Journal of Applied Polymer Science 90, 2609-2617.
How to Cite
Cruz-Salgado, J., Alonso-Romero, S., Estrada-Monje, A., & Zitzumbo-Guzman, R. (2020). MECHANICAL PROPERTIES OPTIMIZATION OF A PET/WOOD COMPOSITE BY MIXTURE EXPERIMENTS. Revista Mexicana De Ingeniería Química, 15(2), 643-654. Retrieved from