EFFECT OF GENERATION TEMPERATURE ON A BRANCHED-GAX ABSORPTION COOLING CYCLE

  • M. Cervantes-Astorga Instituto de Ingeniería, Universidad Autónoma de Baja California
  • D. Sauceda-Carvajal Departamento de Electrónica y Comunicaciones, Centro de Investigación Científica y de Educación Superior de Ensenada
  • N. Velázquez-Limón Instituto de Ingeniería, Universidad Autónoma de Baja California
  • F. Lara-Chavez Departamento de Ingeniería en Energía, Universidad Politécnica de Baja California
  • G. Pando-Martinez Departamento de Ingeniería Mecánica, Instituto Tecnológico de Hermosillo
Keywords: cycle Branched-GAX, ammonia-water, generator temperature, COP, Branched mass flow rate

Abstract

The objective of this paper is to study the effect of generator temperature on the performance of a Branched-GAX absorption cooling cycle, using ammonia-water mixture as working fluid. From mass and energy conservation equations, a simulator was developed and with a parametric study, the cycle efficiency was evaluated for a generator temperature ranging from 118°C to 190°C and ambient temperature between 25 and 40°C. The obtained results indicate that the generator temperature has an important effect on the ammonia absorption in the GAX zone, its inferior limit is 118ºC and as this value increases, the ammonia absorption in the GAX zone so does. On the other side, the branched mass flow has a positive effect on the cycle efficiency, its maximum value is 1.043 kg/min for generator temperature of 123.3°C and ambient temperature of 25°C, but its magnitude decreases as the generator temperature or ambient temperature increases. The highest Coefficient of Performance (COP) was 1.492 for generator and ambient temperatures of 190 and 25°C respectively, under these conditions the branched mass flow was 1.029 kg/min.

References

Altenkirch, E. y Tenckhoff, B. (1914). Absorptionakaeltemaschine zur Kontinuerlichen Erzeugung von Kaelte und Waerme oder Acuh von Arbeit, German patent no. 278,076.

Dixit, M., Arora, A. y Kaushik, S. C. (2015). Thermodynamic analysis of GAX and hybrid GAX aqua-ammonia vapor absorption refrigeration systems. International Journal of Hydrogen Energy 40, 16256-16265.

Engler, M., Grossman, G. y Hellmann, H. M. (1997). Comparative simulation and investigation of ammonia water absorption cycles for heat pump applications. International Journal of Refrigeration 20, 504-516.

Erickson, D. C., Anand, G. y Papar, R. A. (1996). Branched GAX cycle gas fired heat pump. 11-16 August. Washington DC. Intersociety Energy Conversion Engineering Conference.

Gomez, V. H., Vidal, A., Best, R., Garcia-Valladares, O. y Velazquez, N. (2008). Theoretical and experimental evaluation of an indirect-fired GAX cycle cooling system. Applied Thermal Engineering 28, 975-987.

Herold, K.E., He, X., Erickson, D.C. y Rane, M.V. (1991). The Branched GAX absorption heat pump cycle. 30 September-2 October. Tokyo, Japan. International Absorption Heat Pump Conference.

Herold, K.E., Radermacher, R. y Klein S.A. (1996). Absorption Chillers and Heat Pumps. CRC Press. Boca Raton, FL.

Ibrahim O.M., Klein S.A. (1993). Thermodynamic properties of ammonia-water mixtures. ASHRAE Transactions 21, 1495-1502.

Kang, Y. T., Hong, H. y Park, K. S. (2004). Performance analysis of advanced hybrid GAX cycles, HGAX. International Journal Refrigeration 27, 442-448.

Lugo-Leyte, R., Salazar-Pereyra, M., Ruíz-Ramírez, O.A., Zamora-Mata, J.M., Torres-González, E.V. (2013). Análisis de costos de operación exergoeconómicos a un ciclo teórico de refrigeración por compresión de vapor usando HFC-134a. Revista Mexicana de Ingeniería Química 12, 361-370.

Mehr, A.S., Yari, M., Zarin, A., Mahmoudi, S. M. S. y Soroureddin, A. (2012). A comparative study on the GAX based absorption refrigeration systems. Applied Thermal Engineering 40, 29- 38.

Mehr, A.S., Zare, V. y Mahmoudi, S. M. S (2013). Standard GAX versus hybrid GAX absorption refrigeration cycle: From the view point of thermoeconomics. Energy Conversion and Management 76, 68-82.

Ramesh, Kumar, A. y Udayakumar, M. (2007). Simulation studies on GAX absorption compression cooler. Energy Conversion Management 48, 2604-2610.

Stoicovici, M.D. (1995). Polybranched regenerative GAX cooling cycles. International Journal of Refrigeration 18, 318-329.

Velázquez, N. y Best, R. (2002). Methodology for the energy analysis of an air cooled GAX absorption heat pump operated by natural gas and solar energy. Applied Thermal Engineering 22, 1089-1103.

Yari, M., Zarin, A. y Mahmoudi, S. M. S. (2011). Energy and exergy analysis of GAX and GAX hybrid absorption refrigeration cycles. Renewable Energy 36, 2011-2020.

Zaltash, A. y Grossman, G. (1996). Simulation and performance analysis of basic GAX and advanced GAX cycles with ammonia-water and ammonia-water-LiBr absorption fluids. 17-20 September. Montreal, Canada. International Absorption Heat Pump Conference.

Zheng, D., Deng, W., Jin, H. y Ji, J. (2007). αh diagram and principle of exergy coupling of GAX cycle. Applied Thermal Engineering 27, 1771-1778.
Published
2020-01-27
How to Cite
Cervantes-Astorga, M., Sauceda-Carvajal, D., Velázquez-Limón, N., Lara-Chavez, F., & Pando-Martinez, G. (2020). EFFECT OF GENERATION TEMPERATURE ON A BRANCHED-GAX ABSORPTION COOLING CYCLE. Revista Mexicana De Ingeniería Química, 15(2), 675-684. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1245
Section
Thermodynamics