• A. Ramírez-Hernández Instituto de Química Aplicada, Universidad del Papaloapan
  • M. Valera-Zaragoza Instituto de Química Aplicada, Universidad del Papaloapan
  • A. Aparicio-Saguilán Instituto de Biotecnología, Universidad del Papaloapan
  • J.C. Conde-Acevedo Instituto de Química Aplicada, Universidad del Papaloapan
Keywords: thermal behavior, polyethylene therephthalate, banana starch, blends


The thermal behavior and structural of banana starch films with degraded PET is discussed (S/PETdeg). The PET degradation and the characteristics of A/PETdeg films were analyzed by Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA). Terephthalic acid, acid dimers and residual macromolecular chains were the degradation products of PET, which showed different thermal behavior. The thermal stability of the A/PETdeg composite films was lower than the individual components; this behavior was related to the breakdown of the starch amorphous domains (branching points of the amylopectine molecule) and due to the catalytic effect caused by the terephthalic acid during the thermal process. Additionally, the barrier to water absorption of the A/PETdeg films was increased depending on the content of PETdeg.


Aparicio-Saguilán, A., Valera-Zaragoza, M., Perucini-Avendaño, M., Páramo-Calderón, D.E., Aguirre-Cruz, A., Ramírez-Hernández, A. y Bello-Pérez, L.A. (2014). Lintnerization of banana starch isolated from underutilized variety: morphological, thermal, functional properties and digestibility. CyTA - Journal of Food 13, 3-9.

Awaja, F. y Pavel, D. (2005). Recycling of PET. European Polymer Journal 41, 1453-1477.

Bello-Pérez, L.A., Agama-Acevedo, E., Sáyago-Ayerdi, S.G., Moreno-Damian, E. y Figueroa J.D.C. (2000). Some structural, physicochemical and functional studies of banana starches isolated from two varieties growing in Guerrero, México. Starch/Starke 52, 68-73.

De Lima, S.M, Lima, M.A.G.A., Medeiros, Y.B. de A. y Vinhas, G.M. (2008). Polyethylene/amphiprotic blends as alternative for decreasing plastics residues in the environment. Polymer Bulletin 60, 301-311.

Dimitrova, T.L., La Mantia, F.P., Pilati, F., Toselli, M., Valenza, A. y Visco, A. (2000). On the compatibilization of PET/HDPE blends through a new class of copolyesters. Polymer 41, 4817- 4824.

Djebara, M., Stoquert, J.P., Abdesselam, M., Muller, D y Chami, A.C. (2012). FTIR analysis of polyethylene terephthalate irradiated by MeV He+. Nuclear Instruments and Methods in Physics Research B 274, 70-77.

Fang, J.M., Fowler, P.A., Tomkinson, J. y Hill, C.A.S. (2002). The preparation and characterisation of a series of chemically modified potato starches. Carbohydrate Polymers 47, 245-252.

Flores-Gorosquera, E., García-Suarez, F.J., FloresHuicochea, E., Nuñez-Santiago, M.C., González-Soto, R.A. y Bello-Pérez, L.A. (2004). Rendimiento del proceso de extracción de almidón a partir de frutos de plátano (Musa paradisiaca). Estudio en planta piloto. Acta Científica Venezolana 55, 86-90.

Girija, B.G., Sailaja, R.R.N. y Madras, G. (2005). Thermal degradation and mechanical properties of PET blends. Polymer Degradation and Stability 90, 147-153.

Güclü, G., Yalcinyuva, T., Özgümüs, S. y Orbay, M. (2003). Hydrolysis of waste polyethylene terephthalate and characterization of products by differential scanning calorimetry. Thermochimica Acta 404, 193-205.

Hadac, J., Slobodian, P. y Saha, P. (2007). Volume relaxation in amorphous and semicrystalline PET. Journal of Materials Science 42, 3724- 3731.

Hadjizadeh, A., Ajji, A. y Bureau, M.N. (2011). Nano/micro electron-spun polyethylene terephthalate fibrous mat preparation and characterization. Journal of the Mechanical Behavior of Biomedical Materials 4, 340-351.

Hasjim, J. y Jane J-L. (2009). Production of resistan starch by extrusion cooking of acid-modified normal-maize starch. Journal of Food Science 74, C556-62.

Holland, B.J. y Hay, J.N. (2002). The thermal degradation of PET and analogous polyesters measured by thermal analysis-Fourier transform infrared spectroscopy. Polymer 43, 1835-1847.

Hosseini, S.S., Taheri, S., Zadhoush, A. y Mehrabani-Zeinabad, A. (2007). Hydrolytic degradation of poly(ethylene terephthalate). Journal of Applied Polymer Science 103, 2304- 2309.

Kao, C.Y., Wan, B.Z. y Cheng, W.H. (1998). Kinetics of hydrolytic depolimerization of melt poly(ethylene terephthalate). Industrial & Engineering Chemistry Research 37, 1228- 1234.

Kenny, S.T., Nikodinovic, J.R., Kaminsky, W., Woods, T., Babu, R.P., Keely, C.M. y O´Connor, K.E. (2008). Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polihydroxyalkanoato). Environmental Science and Technology 42, 7696-7701.

Marin, D.H., Romero, R.A., Guzman, M. y Sutton, T.B. (2003). Black Sigatoka: An increasing treat to banana cultivation. Plant Disease 87, 208-222.

Moad, G. (2011). Chemical modification of starch by reactive extrusion. Progress in Polymer Science 36, 218-237.

Núñez-Santiago, M.C., Bello-Pérez, L.A. y Tecante, A. (2004). Swelling-solubility characteristics, granule size distribution and rheological behavior of banana (Musa paradisiaca) starch. Carbohydrate Polymers 56, 65-75.

Paszun, D. y Spychaj, T. (1997). Chemical recycling of poly(ethylene terephthalate). Industrial & Engineering Chemistry Research 36, 1373- 1383.

Peng, X., Ding, E. y Xue, F. (2012). In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature. Applied Surface Science 258, 6564-6570.

Pluta, M., Bartczak, Z., Pawlak, A., Galeski, A. y Pracella, M. (2001). Phase structure and viscoelastic properties of compatibilized blends of PET and HDPE recyclates. Journal of Applied Polymer Science 82, 1423-1436.

Raj, B., Sankar, U.K. y Siddaramaiah. (2004). Low density polyethylene/starch blend films for food packaging applications. Advances in Polymer Technology 23, 32-45.

Ramírez, A., Navarro, L.G. y Conde, J.A. (2010). Degradación química del poli(etilen tereftalato). Revista Colombiana de Química 39, 321-331.

Ratanakamnuan, U. y Aht-Ong, D. (2006). Photobiodegradation of Low-Density Polyethylene/Banana Starch Films. Journal of Applied Polymer Science 100, 2725-2736.

Rodriguez-Gonzalez, F.J., Ramsay, B.A. y Favis, B.D. (2003). High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44, 1517-1526.

Rosa, D.S., Guedes, C.G. y Carvalho, C.L. (2007). Processing and thermal, mechanical and morphological characterization of postconsumer polyolefins/thermoplastic starch blends. Journal of Materials Science 42, 551- 557.

Ruvolo-Filho, A. y Curti, P.S. (2006). Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly(ethylene terephthalate) in nonaqueous ethylene glycol solution. Industrial & Engineering Chemistry Research 45, 7985- 7996.

Sammon, C., Yarwood, J. y Everall, N. (2000). An FT-IR study of the effect of hydrolytic degradation on the structure of thin PET films. Polymer Degradation and Stability 67, 149-158.

Santos, P. y Pezzin, S.H. (2003). Mechanical properties of polypropylene reinforced with recycled-PET fibres. Journal of Materials Processing Technology 143-144, 517-520.

Shields, R.J., Bhattacharyya, D. y Fakirov, S. (2008). Oxygen permeability analysis of microfibril reinforced composites from PE/PET blends. Composites:Part A 39, 940-949.

Shujun, W., Jiugao, Y. y Jinglin, Y. (2005). Preparation and characterization of compatible thermoplastic starch/polyethylene blends. Polymer Degradation and Stability 87, 395-401.

Sledz, M., Janczak, J. y Kubiak, R. (2001). New crystalline modification of terephthalic acid. Journal of Molecular Structure 595, 77-82.

Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Hoboken.

Tang, X. y Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers 85, 7-16.

Tao, Y. y Mai, K. (2007). Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends. European Polymer Journal 43, 3538-3549.

Téllez, C.A., Hollauer, E., Mondragón, M.A. y Castaño, V.M. (2001). Fourier transform infrared and Raman spectra, vibrational assignment and ab initio calculations of terephthalic acid and related compounds. Spectrochimica Acta Part A 57, 993-1007.

Vargas-Torres, A., Zamudio-Flores, P.B., Salgado-Delgado, R. y Bello-Pérez, L.A. (2008). Biodegradation of Low-Density Polyethylene-Banana Starch Films. Journal of Applied Polymer Science 110, 3464-3472.

Vieira, C.B., Regina, E.A., Cardoso, D.O., Rodriguez, A.M.C. y Meller, L.H.D. (2013). Green banana (Musa cavendishii) flour obtained in spouted bed ? effect of drying on physicochemical, functional and morphological characteristics of the starch. Industrial Crops and Products 41, 241-249.

Yoshioka, T., Motoki, T. y Okuwaki, A. (2001). Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Industrial & Engineering Chemistry Research 40, 75-79.

Zhang, P., Whistler, R.L., BeMiller, J.N. y Hamaker B.R. (2005). Banana starch: production, physicochemical properties, and digestibility-a review. Carbohydrate Polymers 59, 443-458.
How to Cite
Ramírez-Hernández, A., Valera-Zaragoza, M., Aparicio-Saguilán, A., & Conde-Acevedo, J. (2020). THERMAL BEHAVIOR OF BANANA STARCH FILMS WITH DEGRADED POLYETHYLENE TEREPHTHALATE. Revista Mexicana De Ingeniería Química, 14(2), 513-521. Retrieved from