SYNTHESIS OF α-L-FUCOSIDASE IN DIFFERENT STRAINS OF LACTIC ACID BACTERIA

  • Y. Escamilla-Lozano
  • M. García-Garibay
  • A. López-Munguía-Canales Instituto de Biotecnología UNAM
  • L. Gómez-Ruíz
  • G. Rodríguez-Serrano
  • A. Cruz-Guerrero
Keywords: α-L-fucosidase, lactobacilli, fucose, human milk oligosaccharides

Abstract

The ability of six lactic acid bacteria to produce α-L-fucosidase is reported here for the first time, opening a wide field of investigation into the metabolism and assimilation of human milk oligosaccharides by lactic acid bacteria. Lactobacillus casei IMAU60214, Lactobacillus casei Shirota, Lactobacillus rhamnosus GG, Lactobacillus rhamnosus KLDS, Lactobacillus helveticus IMAU70129 and Lactobacillus delbrueckii subsp. bulgaricus NCFB-2772 were all able to produce α-L-fucosidases. Growth kinetics and carbohydrate consumption measurements indicated that the six strains were able to metabolise D-glucose and D-galactose as a carbon source; surprisingly, they did not assimilate L-fucose. However, α-L-fucosidase was a cell-associated enzyme and produced constitutively in different carbon sources. The highest cellassociated α-L-fucosidase activity was observed in L. rhamnosus GG (0.16 U mg−1)

References

Ashida, H., Miyake, A., Kiyohara, M., Wada, J., Yoshida, E., Kumagai, H. and Katayama, T. (2009). Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19, 1010- 1017.

Bode, L. (2009). Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22, 1147-1162.

Cruz-Guerrero, A., Hernández-Sánchez, H.,Rodríguez-Serrano, G., Gómez-Ruíz, L., Garc´´ia-Garibay, M. and Figueroa-González,I. (2014). Commercial probiotic bacteria and prebiotic carbohydrates: a fundamental study on prebiotics uptake, antimicrobials production and inhibition of pathogens. Journal of the Science of Food and Agriculture 94, 2246-2252.

Chaturvedi, P., Warren, C., Altaye, M., Morrow, A., Ruíz-Palacios, G., Pickering L. and Newburg, D. (2001). Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11, 365-372.

Hickey, M.W., Hillier, J. and Jago, G. R. (1986). Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Applied and Environmental Microbiology 51, 825?31.

Morita, H., Toh, H., Oshima, K., Murakami, M., Taylor, T., Igimi, S. and Hattori, M. (2009). Complete genome sequuence of the probiotic Lactobacillus rhamnosus ATCC 53103. Journal of Bacteriology 191, 7630-7631.

Newburg, D. S. (2009). Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. Journal of Animal Science 87, 26-34.

Pokusaeva, K., Fitzgerald, G. F. and Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition 6, 285-306.

Rodríguez-Díaz, J., Monedero, V. and Yebra, M. J. (2011). Utilization of natural fucosylated oligosaccharides by three novel alpha-Lfucosidases from a probiotic Lactobacillus casei strain. Applied and Environmental Microbiology 77, 703-705.

Rodríguez-Díaz, J., Rubio, C, A. and Yebra, M. J. (2012). Lactobacillus casei ferments the N-acetylglucosamine moiety of fucosyl-α-1,3- N-acetylglucosamine and excretes L-fucose. Applied and Environmental Microbiology 78, 4613-4619.

Schwab, C. and Ganzle, M. (2011). Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. FEMS Microbiology Letters 315, 141-148.

Sela, A. D. (2011). Bifidobacterial utilization of human milk oligosaccharides. International Journal of Food Microbiology 149, 58-64.

Shoaf- Sweeney., K. D. and Hutkins, R. W. (2009). Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. Advances in Food and Nutrition Research 55, 101-161.

Tsai, Y. K. and Lin, T. H. (2006). Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. Journal of Applied Microbiology 100, 446-59.

Ward, R. E, Ninonuevo, M., Mills, D., Lebrilla,C. B. and German, J. B. (2007). in vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Molecular Nutrition and Food Research 51, 1398-1405.

Zourari, A., Accolas, J. P. and Desmazeaud, M. J. (1992). Metabolism and biochemical characteristics of yogurt bacteria. Le Lait 72, 1-34.
Published
2020-02-07
How to Cite
Escamilla-Lozano, Y., García-Garibay, M., López-Munguía-Canales, A., Gómez-Ruíz, L., Rodríguez-Serrano, G., & Cruz-Guerrero, A. (2020). SYNTHESIS OF α-L-FUCOSIDASE IN DIFFERENT STRAINS OF LACTIC ACID BACTERIA. Revista Mexicana De Ingeniería Química, 14(3), 623-629. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1301
Section
Biotechnology

Most read articles by the same author(s)