• Y. Estrada-Girón Departamento de Ingeniería Química, Universidad de Guadalajara
  • J. Aguilar Departamento de Ciencias Tecnológicas, Universidad de Guadalajara
  • J.A. Morales-del Rio Departamento de Farmacobiología, Universidad de Guadalajara
  • A.J. Valencia-Botin Departamento de Ciencias Básicas, Universidad de Guadalajara
  • J.A. Guerrero-Beltrán Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas
  • A. H. Martínez-Preciado Departamento de Farmacobiología, Universidad de Guadalajara
  • E.R. Macías Departamento de Ingeniería Química, Universidad de Guadalajara
  • J.F.A. Soltero Departamento de Ingeniería Química, Universidad de Guadalajara
  • J. Solorza-Feria Instituto Politécnico Nacional- CEPROBI
  • V.V.A. Fernández Departamento de Ciencias Tecnológicas, Universidad de Guadalajara
Keywords: nixtamalized corn masa (dough), starch, linear and non-linear rheology, microstructure, calorimetry, pasting curves


The effect of the moisture content (55, 60 and 65% (w/w)) and temperature (30, 40 and 50 °C) on the X-ray diffraction (XRD), microstructural, pasting, thermal and rheological properties of nixtamalized dough (masa) from a corn hybrid variety (Zea mays sp.) is reported. A complete set of rheological tests including temperature and frequency sweeps, steady shear and transient shear flow was performed in order to get detailed information on the food processing issues. The nixtamalization process affected significantly (P < 0.05) the microstructural and thermal properties of masa. Polarized Light microscopy and XRD showed that crystallinity in starch granules decreased for the masa; whereas, Scanning Electron Microscopy (SEM), showed swollen granules dispersed into a plasticized surface. Moreover, Differential Scanning Calorimetry (DSC) showed significant (P < 0.05) differences on the gelatinization enthalpy (∆Hgel) of masa, where it increased with increasing the moisture content from 6.7 ± 0.84 J/g for 55% (w/w) to 10.2 ± 0.4 J/g for 60% (w/w). Frequency sweeps showed a predominant elastic behavior where the storage modulus (G´) was higher than the loss modulus (G´´) and they were significantly (P < 0.05) affected by the moisture content and temperature into a small range. The steady shear data exhibited a shear-thinning flow behavior and followed a power law equation, where the power law index (n) decreased when the temperature and the moisture content increased. The effect of temperature on the shear-viscosity (η) was well described by the Arrhenius equation, exhibiting energy activation energy (Ea) values in the range from 25.52 to 59.35 KJ/mol. For transient shear test, all masas presented a stress overshoot at high shear rate before reaching a steady state. It was found that the amplitude of this overshoot depends on the shear rate. On the other hand, the stress relaxation test, which gives the main relaxation time (τ), showed fast relaxation decay at short times, whereas at long times, a slow relaxation was observed. The τ values ranged from 10.46 to 0.43 s, which decreased with increasing shear rate. The rheological behavior of masa was related to a weak gel-like structure formation, composed by dispersed swollen starch granules into a cross-linked starch network, similar to a biocomposite material.


Achayuthakan, P. and Suphantharika, M. (2008). Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydrates Polymers 71, 9-17.

Aparicio-Sanguilán, A., Méndez-Montealvo, G., Solorza-Feria, J., Bello-Pérez, L.A. (2006). Thermal and viscoelastic properties of starch gels from maize varieties. Journal of the Science of Food and Agriculture 86, 1078-1086.

ASAE Standards. S319.2. (1995). Methods for determining and expressing fineness of feed materials by sieving. St. Joseph, Mich., ASAE.

Bello-Perez, L.A., Osorio-Díaz, P., Agama-Acevedo, E.A., Nuñez-Santiago, C., and Paredes-Lopez, O. (2002). Chemical, Physicochemical and rheological properties of masas and nixtamalized corn flour. Agrociencia 36, 319- 328.

Biliaderis, C. G., Page, C.M., Maurice, T. J., and Juliano, B.O. (1986). Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. Journal of Agricultural and Food Chemistry 34, 6-14.

Caballero-Briones. A., Iribarren. A., and Peña J.L. (2000). Recent advances on the understanding of the nixtamalization process. Superficies y Vacío 10, 20-24.

Casas-Alencaster, N.B. and Pardo-García, D.G. (2005). Análisis de perfil de textura y propiedades de relajación de geles de mezclas almidón de maíz ceroso entrecruzado-gelana. Revista Mexicana de Ingeniería Química 4, 107-121.

Chel-Guerrero, L., Cruz-Cervera, D., Betancur-Ancona, D., and Solorza-Feria, J. (2011). Chemical composition, termal and viscoelastic characterization of tuber starches growing in the Yucatan península of México. Journal of Food Process Engineering 34, 363-382.

Chun, S.Y. and Yoo, B. (2004). Rheological behavior of cooked rice flour dispersions in steady and dynamic shear. Journal of Food Engineering 65, 363-370.

Della, V., G., Buleon, A., Carreau, P. J., Lavoie, P.-A., and Vergnes, B. (1998). Relationship between structure and viscoelastic behavior of plasticized starch. Journal of Rheology 42, 507- 525.

Eliasson, A.-C. (1986). Viscoelastic behavior during the gelatinization of starch I. comparison of wheat, maize, potato and waxy-barley starches. Journal of Texture Studies 17, 253-265.

Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed). New York:Wiley.

Flores-Farías, R., Martínez-Bustos, F., Salinas-Moreno, Y., Kil, C.Y., González, H.J. and Ríos, E. (2000). Physicochemical and rheological characteristics of commercial nixtamalised Mexican maize flours for tortillas. Journal of the Science of Food and Agriculture 80, 657- 664.

Kim, Y. and Wang, S.S. (1999). Starch cooking with limited water as affected by zein and guar gum. Journal of Food Science 64, 133-135.

Li, J. and Yeh, A. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering 50, 141-148.

Mondragón, M., Mendoza-Martinez, A. M., Bello-Pérez, L. A. and Peña, J. L. (2006). Viscoelastic behavior of nixtamalized maize starch gels. Carbohydrates Polymers 65, 314-320.

Núñez-Santiago, M.C., García- Suarez, F.J., Gutierrez-Meráz, F., Sánchez-Rivera, M.M., and Bello-Perez, L.A. (2011). Algunos factores intrínsecos y extrínsecos de almidones acetilados:caracterización morfológica, fisicoquímica y estructural. Revista Mexicana de Ingeniería Química 3, 501-512.

Palacios-Fonseca, A.J., Vazquez-Ramos, C. and Rodriguez-García, M.E. (2009). Physicochemical characterization of industrial and traditional nixtamalized corn flours. Journal of Food Engineering 93, 45-51.

Quintanar-Guzmán, A., Jaramillo-Flores, M.E., Mora-Escobedo, R., Chel-Guerrero, L. and Solorza-Feria, J. (2009). Changes on the structure, consistency, physicochemical and viscolastic properties of corn (Zea mays sp.) under different nixtamalization conditions. Carbohydrate Polymers 78, 908-916.

Quintanar-Guzmán, A., Jaramillo-Flores, M.E., Solorza-Feria, J., Méndez-Montealvo, M.G. and Wang, Y.J. (2010). Effects of polymerization changes in maize proteins during nixtamalization on the thermal and viscoelastic properties of masa in model systems. Journal of Cereal Science 52, 152- 160.

Quintanar-Guzmán, A., Jaramillo-Flores, M.E., Solorza-Feria, J., Mendez-Montealvo, M. and Wang, Y.J. (2011). Rheological and thermal properties of masa as related to changes in corn protein during nixtamalization. Journal of Cereal Science 53, 139-147.

Rao, M.A. (1999). Rheology of fluid and semisolid foods. Principles and applications. Aspen, Gaithersburg.

Rao, M.A. (2007). Influence of food microstructure on food rheology. In: McClements, D.J., (ed) Undertanding and controlling the microstructure of complex foods. CRC Press, Washington, DC, pp. 411-424.

Ratnayake, W. S. and Jackson David S. (2007). A new insight into the gelatinization process of native starches. Carbohydrate Polymers 67, 511-529.

Sankarakutty, M.S., Sreekumar, J., Unnikrishnan, M., Moorthy, S.N., and Shanavas, S. (2010). Kinetics of thermal softening of cassava tubers and rheological modeling of the starch. Journal of Food Science and Technology 47, 507-518.

Sasaki, T., Yasui, T., Matsuki, J. (2000) Effect of amylase content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chemistry 77, 58-63.

Serna-Saldivar, S.O., Amaya-Guerra, C.A., Herrera-Macias, P., Melesio-Cuellar, J.L., Preciado-Ortiz, R.E., Terron-Ibarra, A.D., and Vazquez-Carrillo, G. (2008) Evaluation of the limecooking and tortilla making properties of quality protein maize hybrids grown in Mexico. Plant Foods for Human Nutrition 63, 119-125.

Steffe, J.F. (1996). Rheological methods in food process engineering. Freeman Press, East Lansing, MI.

Sudha, M.L. and Leelavathi, K. (2008). Influence of micronutrients on rheological characteristics and bread-making quality of flour. International Journal of Food Sciences and Nutrition 59, 105- 15.

Thomas, D. J., Atwell, W. A. (1999). Starches (handbook series). St.Paul, MN: American Association of Cereal Chemists.

Tolstoguzov, V.B. (1991). Functional properties of food proteins and role of protein-polysaccharide interaction-Review. Food Hydrocolloids 4, 429- 68.

Yañez-Farias, G.A., Moreno-Valencia, J.G., MdR, F.- V. and Barrón-Hoyos, J.M. (1997). Isolation and partial characterization of starches from dry beans (phaseolus vulgaris) and chickpeas (cicer arietinum), grown in Sonora, Mexico. Starch/Starke 49, 341-345.
How to Cite
Estrada-Girón, Y., Aguilar, J., Morales-del Rio, J., Valencia-Botin, A., Guerrero-Beltrán, J., Martínez-Preciado, A. H., Macías, E., Soltero, J., Solorza-Feria, J., & Fernández, V. (2020). EFFECT OF MOISTURE CONTENT AND TEMPERATURE, ON THE RHEOLOGICAL, MICROSTRUCTURAL AND THERMAL PROPERTIES OF MASA (DOUGH) FROM A HYBRID CORN (Zea mays sp.) VARIETY. Revista Mexicana De Ingeniería Química, 13(2), 429-446. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1335
Food Engineering