REDUCTION OF CATION EXCHANGE CAPACITY IN A MICROBIAL FUEL CELL AND ITS RELATION TO THE POWER DENSITY

  • J.A. Domínguez-Maldonado Centro de Investigación Científica de Yucatán
  • O. García-Rodríguez Centro de Investigación Científica de Yucatán
  • M. Aguilar-Vega Centro de Investigación Científica de Yucatán
  • M. Smit Centro de Investigación Científica de Yucatán
  • L. Alzate-Gaviria Centro de Investigación Científica de Yucatán
Keywords: cation exchange capacity, proton exchange membrane, biofouling, microbial fuel cell, power density

Abstract

A PEM type Microbial Fuel Cell was designed and constructed. This cell consisted of four pairs of chambers with a volume of 0.5 L each one of them, separated by a Nafion®117 membrane. The cell was monitored during 122 days, using synthetic wastewater as carbon source. The reduction of cation exchange capacity in the membrane was evaluated in two phases: 1 and 2, the first one at 43 days and the second one at 79 days. The cationic exchange coefficients obtained were 2.03 ×10−3 and 1.25 ×10−3 meq g−1 polymer, for phase 1 and 2 respectively, indicating a decrease in the cation exchange properties in the membrane. The maximum obtained power densities were 325 and 97 mW.m−3, respectively. The reduction of power density at phase 2 was attributed to a decrease in the cation-exchange capacity by iron fouling and a formation of a biofouling layer in the membrane.

References

Aelterman, P., Rabaey K., Clauwaert P. y Verstraete, W. (2006). Microbial fuel cells for wastewater treatment. Water Science and Technology 54, 9- 15.

Aelterman, P., Versichele, M., Marzorati, M., Boon, N. y Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different tree dimensional anodes. Bioresource Technology 99, 8895-8902.

Alzate-Gaviria, L., Sebastian, P. y Pérez-Hernández, A. (2007). Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. International Journal of Hydrogen Energy 32, 3141-3146.

Alzate-Gaviria, L., Fuentes-Albarrán, C., Álvarez-Gallegos, A. y Sebastian, P. (2008). Generación de electricidad a partir de una celda de combustible microbiana tipo PEM. Interciencia 33, 503-509.

Angenent, L., Karim, K., AL-Dahhan, M., Wrenn, B. y Domigues-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology 22, 477-485.

Aperador, W., Bautista-Ruíz, J. y Pardo-Cuervo, O. (2012). Comportamiento electroquimico de las peliculas delgadas de crn/cr obtenidas variando el potencial bias. Revista Mexicana de Ingeniería Química 11,145-154.

Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S. y Kim I.S. (2008) Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells. Energy and Fuels 22, 169-176.

Cheng, S, Liu, H. y Logan, B. (2006). Increased Power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science and Technology 40, 2426-2432.

Cheng, S., Liu, H., and Logan, B. E. (2006a). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Techology 40, 364- 369

Cheng, S. y Logan, B.E. (2007). Ammonia treatment of carbon cloth anodes to enhance power, generation of microbial fuel cells. Electrochemistry Communications 9, 492-496.

Choi, M.J., Chae, K.J., Ajayi F.F., Kyoung-Yeol, K., Hye-Weon, Yu., Chang-won, Kim. y In, S.K. (2011). Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresource Technology 102, 298-303.

Clauwaert, P., Aelterman, P., Pham, H., De Schamphelaire, L., Carballa, M., Rabaey, K. y Verstraete, W. (2008). Minimizing losses in bio-electrochemical systems: the road to applications. Applied Microbiology and Biotechnology 79, 901-913.

Fan, Y., Sharbrough, E. y Liu, H. (2008). Quantification of the Internal Resistance Distribution of Microbial Fuel Cells. Environmental Science and Technology 42, 8101-8107.

Ghangrekar, M.M. y Shinde, V.B. (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology 98, 2879-2885.

Haberman, W. y Pommer, E. (1991). Biological fuel cells with sulphide storage capacity. Applied Microbiology and Biotechnology 35, 128-133.

Harnisch, F., Schroder, U. y Schölz, F. (2008). The Suitability of Monopolar and Bipolar Ion Exchange Membranes as Separators for Biological Fuel Cells. Environmental Science and Technology 42, 1740-1746.

Harnisch, F. y Schröder, U. (2009). Selectivity versus mobility: Separation of anode and cathode in microbial bioelectrochemical Systems. ChemSusChem 2, 921-926.

He, Z., Minteer, S. y Angenent, L. (2005). Electricity Generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science and Technology 39, 5262-5267.

Hong, Y., Call, F.D., Werner ,C.M. y Logan B. E.(2011). Adaptation to high current using low external resistances eliminates power overshot in microbial fuel cells. Biosensors and Bioelectronics 28, 71-76.

Katuri, K.P. y Scott, K. (2010). Electricity generation from treatment of the waste water with a hybrid upflow microbial fuel cell. Biotechnology and Bioenergy 107, 52-58.

Kyung Jang, J., Hai Pham, T., Seop Chang, I., Hyun Kang, K., Moon, H., Suk Cho, K. y hong Kim, B. (2004). Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochemistry 39, 1007-1012.

Larminie, J. y Dicks, A. (2003). Fuel cell systems explained. Editorial John Wiley & Sons, England.

Litster, S., Buie, C.R., Fabian, T., Eaton, J.K. y Santiago J.G. (2007). Active Water Management for PEM Fuel Cells. Journal of Electrochemistry Society 154, 1049-1058.

Liu, H., Ramnarayanan, R. y Logan, B.E. (2003). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental. Science and Technology 38, 2281-2285.

Liu, H. y Logan, B. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology 14, 4040-4046.

Liu, H., Cheng, S. y Logan, B. (2005). Power generation in feed batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology 39, 5488-5493.

Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. y Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology 40, 5181-5192.

Logan, B.E. (2008). Microbial fuel cells. Editorial John Wiley & Sons, USA.

Manohar, A.K., Bretschger, O., Nealson, K.H. y Mansfeld, F. (2008). The use of Electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 72, 149-154.

Oh, S., Min, B. y Logan, B.E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cell. Environmental Science Technology 38, 4900-4904.

Pham, T., Rabaey, K., Aelterman, P., Clauwaert, P., Schamphelaire, L., Boon, N. y Verstraete, W. (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering Life Science Journal 6, 285-292.

Poggi-Varaldo, H.M., Alzate-Gaviria, L.M., Pérez-Hernández, A., Nevarez-Morillón, V.G. y Rinderknecht-Seijas, N.A. (2005). Side-by-side comparison of two systems of sequencing coupled reactors for anaerobic digestion of the organic fraction of municipal solid waste. Waste Management and Research 23, 270-80.

Rabaey, K. y Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology 23, 291- 298.

Rabaey, K., Lissens, G. y Verstraete, W. (2005a). Microbial fuel cells: performances and perspectives. In: Biofuels for fuel cells: biomass fermentation towards usage in fuel cells, IWA publishing Nueva York.

Rabaey, K., Boon, N., Höfte, M. y Verstraete, W. (2005b). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science Technology 39, 3401- 3408.

Rismani-Yazdi, H., Christy, A.D., Carver, S.M., Yu, Z., Dehority, B.A. y Tuovinen, O.H. (2011). Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresource Technology 102, 278-283.

Rittmann, B. (2006). Microbial ecology to manage processes in environmental biotechnology. Trends in Biotechnology 24, 261-268.

Rozendal, R.A., Hamelers, H.V. y Buisman, C.J. (2006). Effects of Membrane cation transport on pH and microbial fuel cell performance. Environmental Science Technology 40, 5181- 5191.

Rozendal, R.A., Hamelers, H.V., Rabaey, K., Keller, J. y Buisman, C.J. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology 26, 450-459.

Standard Methods (2005). For the Examination of water and wastewater 21st APHA, AWWA, WPCF Baltimore.

Taeger, A., Vogel, C., Lehman, D., Jehnichen, D., Komber, H., Meier-Haack. J., Ochoa, N., Nunes, S. y Peinemann, K. (2003). Ion exchange membranes derived from sulfonated polyaramides. Reactive and Functional Polymers 57, 77-92.

Ter Heijne, A., Hamelers, H.V., de Wilde, V., Rozendal, R.R. y Buisman, C.J. (2006). A Bipolar Membrane Combined with Ferric iron reduction as an alternative for platinum-based cathodes in microbial fuel cells. Environmental Science Technology 40, 5200-5205.

Toshikatsu, S., Sata T. y Yang, W. (2002). Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. Journal of Membrane Science 206, 31-6.

Varó, P. (1996). Contribución al estudio sobre el comportamiento ambiental y degradación de jabones. Tesis de Doctorado, Departamento de Ingeniería Química, Universidad de Alicante, España.

Vázquez-Larios, A.L., Solorza-Feria, O., Vázquez- Huerta, G., Ríos-Leal, E., Rinderkncht- Seijas, N. y Poggi-Varaldo, H. M.(2011). Internal And Resistance and Performance of Microbial Fuel Cell of Cell Configuration and Temperature. Journal of New Materials for Electrochemical Systems 14, 99-105.

Wagner, N. (2002). Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. Journal of Applied Electrochemical 32, 859- 863.

Wen-Wei, L., Guo ping, S., Xian-Wei, L. y Han-Qing, Y. (2011). Recent advances in the separators for microbial fuel cell. Bioresource Technology 102, 244-255.

Zhang, X. (2005). Preparation and characterization of proton exchange membranes for direct methanol fuel cells. Ph.D. Thesis, Department of Chemical Engineering, Universitat Rovira I Virgili, Spain.

Zhao, F., Slade, R.C. y Varcoe, J.R. (2009). Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews 38, 1926-1939.

Zhuang, L. y Zhou, S. (2009). Substrate crossconduction effect on the performance of serially connected microbial fuel cell stack. Electrochemistry Communications 11, 937-940.
Published
2020-02-17
How to Cite
Domínguez-Maldonado, J., García-Rodríguez, O., Aguilar-Vega, M., Smit, M., & Alzate-Gaviria, L. (2020). REDUCTION OF CATION EXCHANGE CAPACITY IN A MICROBIAL FUEL CELL AND ITS RELATION TO THE POWER DENSITY. Revista Mexicana De Ingeniería Química, 13(2), 527-538. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1347
Section
Environmental Engineering