MODELLING OF A FIXED BED ADSORBER BASED ON AN ISOTHERM MODEL OR AN APPARENT KINETIC MODEL

  • G. Che-Galicia Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de IPH, Universidad Autónoma Metropolitana - Iztapalapa
  • C. Martínez-Vera Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de IPH, Universidad Autónoma Metropolitana - Iztapalapa
  • R.S. Ruiz-Martínez Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de IPH, Universidad Autónoma Metropolitana - Iztapalapa
  • C.O. Castillo-Araiza Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de IPH, Universidad Autónoma Metropolitana - Iztapalapa
Keywords: packed bed adsorber, breakthrough curves, adsorption kinetics, isotherm model, apparent kinetic model

Abstract

Isotherm model and apparent kinetic model are simple approaches, which are indistinctly used to predict the kinetic behaviour of the adsorption phenomena. The main objective in this work was to elucidate when these approaches should be coupled to a pseudo-heterogeneous fixed-bed adsorber model to describe reliable breakthrough curves when experimental data at industrial scale are not available. To achieve this, an adsorption column packed with a low-cost natural zeolite was modelled for the removal of Rhodamine B (RhB). To have certainty in the model predictions, equilibrium and kinetic experiments were carried out. Freundlich isotherm model and a pseudo second order apparent kinetic model accounting for diffusion phenomena led to the most adequate fit to experimental data. Experimental and simulations results indicated that the use of an isotherm model (LDF-M) or an apparent kinetic model (AkA-M) in the packed bed adsorbed model predicted similar tendencies regarding the effect on the breakthrough point of the different parameters considered. Nevertheless, the shapes of the breakthrough curves predicted by both models were significantly different, suggesting that an apparent kinetic model is necessary to have reliable prediction of the industrial behaviour of this studied zeolite since intraparticle mass transport resistances are significant.

References

Aboudzadeh, M.R., Jiawen, Z., Bin, W. (2006). Simulation of protein adsorption in a batchwise affinity chromatography with a modified rate model. Korean Journal of Chemical Engineering 23, 997-1002.

Abu-Lail, L., Bergendahl, J. A., Thompson, R. W. (2012), Mathematical modeling of chloroform adsorption onto fixed-bed columns of highly siliceous granular zeolites. Environmental Progress & Sustainable Energy 31, 591-596.

Al-Duri, B., Yong, Y.P. (2000). Lipase immobilisation: an equilibrium study of lipases immobilised on hydrophopic and hydrophilic/hydrophopic supports. Biochemical Engineering Journal 4, 207-215.

Barrett, E.P., Joyner, L.G., Halenda, P.P. (1951) The determination of pore volumen and area distributions in porous substances. i. computations from nitrogen isotherms. Journal American Chemistry Society 73, 373-380.

Bhuvaneshwari, S., Sivasubramanian, V. (2014). Equilibrium, kinetics, and breakthrough studies for adsorption of Cr(vi) on chitosan. Chemical Engineering Communications 201, 834-854.

Marin, P., Borba, C.E., Módenes, A.N., Espinoza-Quiñones, F.R., de Oliveira, S.P.D., Kroumov, A.D. (2014). Determination of the mass transfer-limiting step of dye adsorption onto commercial adsorbent by using mathematical models. Environmental Technology 35, 2356- 2364.

Camacho, L.M., Parra, R.R., Deng, S. (2011). Arsenic removal from groundwater by MnO2- modified natural clinoptilolite zeolite: effects of pH and initial feed concentration. Journal of Hazardous Materials 189, 286-293.

Carberry, J.J. (1976). Chemical and Catalytic Reaction Engineering. McGraw-Hill, New York.

Castillo-Araiza, C.O., Lopez-Isunza, F. (2008). Hydrodynamic models for packed beds with low tube-to-particle diameter ratio. International Journal of Chemical Reactor Engineering 6 (A1), 1-14.

Chern, J.M., Chien, Y.M. (2001). Adsorption isotherms of benzoic acid onto activated carbon and breakthrough curves in fixed-bed columns. Industrial & Engineering Chemistry Research 40, 3775-3780.

Chu, B.S., Baharin, B.S., Man, Y.B.C., Quek, S.Y. (2004). Separation of vitamin E from palm fatty acid distillate using silica: I Equilibrium of batch adsorption. Journal of Food Engineering 62, 97-103.

Chung, S.F., Wen, C.Y. (1968). Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE Journal 14, 857-866.

Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology 97, 1061-1085.

Crini, G., Peindy, H.N., Gimbert, F., Robert, C. (2007). Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Separation and Purification Technology 53, 97-110.

Crittenden, J.C., Weber, W.J. (1978). Predictive model for design of fixed-bed adsorbers: parameter estimation and development. Journal of the Environmental Engineering Division 104, 185-197.

de Klerk, A. (2003). Voidage variation in packed beds at small column to particle diameter ratios. Journal of American Institute of Chemical Engineers 49, 2022-2029.

De la Peña-Torres, A., Cano-Rodríguez, I., Aguilera-Alvarado, A.F., Gamiño-Arroyo, Z., Gómez-Castro, F.I. Gutiérrez-Valtierra, M.P., Soriano-Pérez S. (2012). Arsenic adsorption and desorption on syntetic iron oxyhydroxides as study model to explain one of the mechanisms for its lixiviation from mining tailings. Revista Mexicana de Ingeniería Química 11, 495-503.

Dawood, S., Sen, T.K. (2012). Removal of anionic dye Congo Red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Research 46, 1933-1946.

Finlayson, B.A. (1980). Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New York.

Gomonaj, V., Gomonaj, P., Golub, N., Szekeresh, K., Charmas, B., Leboda, R. (2000). Compatible adsorption of strontium and zinc ions as well vitamins on zeolites. Adsorption Science and Technology 18, 295-306.

Hall, K.R., Eagleton, L.C., Acrivos, A., Vermeulen, T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constantpattern conditions. Industrial and Engineering Chemistry Fundamentals 5, 212-223.

Han, R., Wang, Y., Zhao, X., Wang, Y., Xie, F., Cheng, J., Tang, M. (2009). Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: Experiments and prediction of breakthrough curves. Desalination 245, 284- 297

Ho, Y.S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials 136, 681-689.

Ho, Y.S., McKay, G. (1999a). The sorption of lead (II) ions on peat. Water Research 33, 578-584.

Ho, Y.S., McKay, G. (1999b). Pseudo-second order model for sorption processes. Process Biochemistry 34, 451-465.

Huang, J.H., Huang, K.L., Liu, S.Q., Wang, A.T., Yan, C. (2008). Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 330, 55-61.

Hutzler, N.J., Crittenden, J.C., Gierke, J.S., Johnson, A.S. (1986). Transport of organic compounds with saturated groundwater flow: experimental results. Water Resources Research 22, 285-295.

Inglezakis, V.J., Grigoropoulou, H. (2004). Effects of operating conditions on the removal of heavy metals by zeolite in fixed bed reactors. Journal of Hazardous Materials 112, 37-43.

Jain, R., Shrivastava, M. (2008). Adsorptive studies of hazardous dye Tropaeoline 000 from an aqueous phase on to coconut-husk. Journal of Hazardous Materials 158, 549-556.

Ko, D.C.K., Porter, J.F., McKay, G. (2001). Filmpore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Research 35, 3876-3886.

Krishna, D.G., Bhattacharyya, G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science 20, 295-300.

Lapidus, L., Seinfeld, J.H. (1971). Numerical Solution of Ordinary Differential Equations. Academic Press, New York.

Liao, H.T., Shiau, C.Y. (2000). Analytical solution to an axial dispersion model for the fixed-bed adsorber. AIChE Journal 46, 1168-1176.

Lua, A.C., Jia, Q. (2009). Adsorption of phenol by oil-palm-shell activated carbons in a fixed bed. Chemical Engineering Journal 150, 455-461.

Marshall, W.R., Pigford, R.L. (1947). Application of Differential Equations to Chemical Engineering Problems. University of Delaware Press, Newark.

Motsi, T., Rowson, N.A., Simmons, M.J.H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing 92, 42-48.

Namasivayam, C., Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 54, 47-58

Namasivayam, C., Ranganathan, K. (1995). Removal of Cd (II) from wastewater by adsorption on ”waste” Fe(III)/Cr(III) hydroxide. Water Research 29, 1737-1744.

Osma, J.F., Saravia, V., Toca-Herrera, J.L., Couto, S.R. (2007). Sunflower seed shells: a novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions. Journal of Hazardous Materials 147, 900-905.

Özcan, A.S., Erdem, B., Özcan, A. (2005). Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 266, 73-81.

Rafatullah, M., Sulaiman, O., Hashim, R., Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials 177, 70-80.

Robinson, T., McMullan, G., Marchant, R., Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 77, 247-255.

Romero-González, J., Cano-Rodríguez, I., Walton, J.C., Peralta-Videa, J. R., Rodríguez E., Gardea-Torresdey J. L. (2005). A model to describe the adsorption and reduction of Cr (vi) from an aqueous solution by agave lechuguilla biomass. Revista Mexicana de Ingeniería Química 4, 261-272.

Ruthven, D.M. (1984). Principles of Adsorption and Adsorption Processes. John Wiley and Sons, New York.

Sankararao, B., Gupta, S.K. (2007). Modeling and simulation of fixed bed adsorbers (FBAs) for multi-component gaseous separations. Computers and Chemical Engineering 31, 1282-1295.

Stewart, W.E., Caracotsios, M., Sørensen, J.P. (1992). Parameter estimation from multiresponse data. AIChE Journal 38, 641- 650.

Tien, C. (1994). Adsorption Calculation and Modeling. Butterworth-Heinemann, Boston.

Vimonses, V., Lei, S., Jin, B., Chow, C.W.K., Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal 148, 354-364.

Walker, G., Weatherley, L. (2001). Adsorption of dyes from aqueous solution-the effect of adsorbent pore size distribution and dye aggregation. Chemical Engineering Journal 83, 201-206.

Wang, S., Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal 156, 11-24.

Weber, W. J. (1972). Physicochemical Processes for Water Quality Control. John Wiley and Sons, New York.

Wilke, C.R., Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal 1, 264-270.

Wilson, E.J., Geankoplis, C.J. (1966). Liquid mass transfer at very low Reynolds numbers in packed beds. Industrial and Engineering Chemistry Fundamentals 5, 9-14.

Wu, F.C., Tseng, R.L., Huang, S.C., Juang, R.S. (2009). Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review. Chemical Engineering Journal 151, 1-9.

Xu, X., Gao, B., Tan, X., Zhang, X., Yue, Q., Wang, Y., Li, Q. (2013). Nitrate adsorption by stratified wheat straw resin in lab-scale columns. Chemical Engineering Journal 226, 1-6.
Published
2020-02-17
How to Cite
Che-Galicia, G., Martínez-Vera, C., Ruiz-Martínez, R., & Castillo-Araiza, C. (2020). MODELLING OF A FIXED BED ADSORBER BASED ON AN ISOTHERM MODEL OR AN APPARENT KINETIC MODEL. Revista Mexicana De Ingeniería Química, 13(2), 539-553. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1348
Section
Process engineering