• J. Carrillo-Ahumada Instituto de Química Aplicada. Universidad del Papaloapan
  • D.E. Paramo-Calderón Instituto de Biotecnología. Universidad del Papaloapan
  • A. Aparicio-Saguilán Instituto de Biotecnología. Universidad del Papaloapan
  • G.C. Rodríguez-Jimenes Departamento de Ingeniería Química y Bioquímica
  • M.A. García-Alvarado Departamento de Ingeniería Química y Bioquímica
Keywords: nonlinear systems, linearization, Taylor series, (bio)chemical reactors


A new criterion of measurement was proposed to determine the representation of a linearized system with respect to nonlinear system. This criterion is based on the Taylor series expansion of nonlinear system and was applied to three (bio)chemical reactors including the Cholette’s bioreactor with multiple inputs, outputs and steady states; a reactor with enzymatic reaction and a chemical reactor. Current approach considers that matrix elements resulting from left division of matrices containing second-order and first-order partial derivatives should be smaller than deviations from the nominal values. With this analysis, is possible to determine the influence of each bifurcation parameter on the nonlinear system for simulation and control applications.


Carrillo-Ahumada, J., Rodríguez-Jimenes, G.C. y García-Alvarado, M.A. (2011). Tuning optimalrobust linear MIMO controllers of chemical reactors by using Pareto optimality. Chemical Engineering Journal 174(1), 357-367.

Chen, C.L., Wang, T.C. y Hsu, S.H. (2002). An LMI approach to H∞ PI controller design Journal of Chemical Engineering of Japan 35(1), 83-93.

Chidambaram, M. y Reddy, G.P. (1996). Nonlinear control of systems with input and output multiplicities. Computers & Chemical Engineering 20(3), 295-299.

Conde-Mejia, C., Jiménez-Gutiérrez, A. y Elhalwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection 90(3), 189-202.

Dhooge, A., Govaerts, W. y Kuznetsov, Y.A. (2003). MATCONT: A matlab package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software 29(2), 141-164.

Dieulot, J.Y. (2012). A productivity signal feedback controller for continuous bioreactos. Journal of Process Control 22, 1318-1324.

Doedel,E., Wang, X. y Fairgrieve, T. (1986). AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Technical Report, California Institute of Technology.

Du, J., Song, C., Yao Y. y Li, P. (2013). Multilinear model decomposition of {MIMO} nonlinear systems and its implication for multilinear model-based control. Journal of Process Control 23(3), 271-281.

Dutta, S., Chowdhury, R. y Bhattacharya, P. (2001). Parametric sensitivity in bioreactor: an analysis with reference to phenol degradation system. Chemical Engineering Science 56, 5103-5110.

Gao, C., Li, K., Feng, E. y Xiu, Z. (2006). Nonlinear impulsive system of fed-batch culture in fermentative production and its properties. Chaos, Solitons and Fractals 28, 271-277.

Garcia-Alvarado, M.A. y Ruiz-López I.I. (2010) A design method for robust and quadratic optimal MIMO linear controllers. Chemical Engineering Science 65(11), 3431-3438.

García-Alvarado, M.A., Ruiz-López, I.I. y Torres-Ramos, T. (2005). Tuning of multivariate PID controllers based on characteristic matrix eigenvalues, Lyapunov functions and robustness criteria. Chemical Engineering Science 60(4), 897-905.

Herrera-López, E.J., Castillo-Toledo, B. y Femat, R. (2012). Fuzzy servo controller for CSTB with substrate inhibition kinetics. Journal of Process Control 22(6), 959-967.

Ibarra-Junquera, V. y Rosu, H.C. (2007). PIcontrolled bioreactor as a generalized Lienard system. Computers and Chemical Engineering 38, 225-231.

Jhunjhunwala, M. K. y Chidambaram, M. (2001). PID controller tuning for unstable systems by optimization method. Chemical Engineering Communications 185, 91-113.

Khalil, H.K. (1996). Nonlinear Systems. Editorial Macmillan Pub. Co. Estados Unidos de America.

Liou, C.T. y Chien, Y.S. (1983). The effect of nonideal mixing on input multiplicity in a CSTR. Chemical Engineering Science 46(8), 2113-2116.

Liu, C., (2013). Sensitivity analysis and parameter identification for a nonlinear time-delay system in microbial fed-batch process. Applied Mathematical Modelling, 38(4), 1449-1463.

Lo, S.N. y Cholette, A. (1983). Multiplicity of conversion in a cascade of imperfectly stirred tank reactors. Chemical Engineering Science 38(1), 367-372.

Márquez-Rubio, J.F., del-Muro-Cuéllar, B., Velasco-Villa, M. y Alvarez-Ramírez, J. (2010). Control basado en un esquema observador para sistemas de primer orden con retardo. Revista Mexicana de Ingeniería Química 9(1), 43-52.

Namjoshi, A., Kienle, A. y Ramkrishna, D. (2003) Steady-state multiplicity in bioreactos: bifurcation analysis of cybernetic models. Chemical Engineering Science 58, 793-800.

Normey-Rico, J.E. y Camacho, E.F. (2009) Unified approach for robust dead-time compensator design. Journal of Process Control 19, 38-47.

Nuñez, S., De Battista, H., Garelli, F. y Vignoni, A. (2013). Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses. Control Engineering Practice 21(9), 1259-1265.

Patnaik, P.R. (2005). Application of the Lyapunov exponent to detect noise-induce chaos in oscillating microbial cultures. Chaos, Solitons and Fractals 26, 759-765.

Rajinikanth, V. y Latha, K. (2012). Tuning and retuning of PID controller for unstable systems using evolutionary algorithm. ISRN Chemical Engineering, 1-10.

Richter, H. y Stein, G. (2002). On Taylor series expansion for chaotic nonlinear systems. Chaos, Solitons and Fractals 13, 1783-1789.

Romero, J.A. y Navarro, J.L. (2009). Improved efficiency in sensitivity calculations for bioreactor models. Computers and Chemical Engineering, 33, 903-910.

Ruíz-López, I.I., Rodríguez Jimenes, G.C. y García-Alvarado, M.A. (2006). Robust MIMO PID controllers tuning based on complex/real ratio of the characteristic matrix eigenvalues Chemical Engineering Science 61(13), 4332-4340.

Schaum, A., Alvarez, J. y Lopez-Arenas, T. (2013). Satured linear dynamic output-feedback control for a class of three state continuous biorreactos with inhibited kinetics. Journal of Process Control 23, 332-350.

Sivaramakrishnan, S., Tangirala, A. K. y Chidambaram, M. (2008). Sliding mode controller for unstable systems. Chemical and Biochemical Engineering Quarterly 22(1), 41- 47.

Sree, R.P. y Chidambaram, M. (2002). Identification of unstable transfer model with a zero by optimization method. Journal of the Indian Institute of Science 82, 219-225.

Sree, R.P. y Chidambaram, M. (2003a). Control of unstable bioreactor with dominat unstable zero. Chemical and Biochemical Engineering Quarterly 17(2), 139-145.

Sree, R.P. y Chidambaram, M. (2003b). A simple method of tuning PI controllers for unstable systems with zero. Chemical and Biochemical Engineering Quarterly 17(3), 207-212.

Stavrinides, S.G., Banerjee, S., Suleyman, H. y Mehmet, O. (2013). Chaos and Complex Systems. Springer Berlin Heidelberg, 209-212.

Vanavil, B., Harikumar, M.P. y Rao, A.S. (2014). Bifurcation analysis of two continuous bioreactors operated in series with recycle. Chemical Engineering Research, Artículo en prensa.

Varma, A., Morbidelli, M. y Wu, H., (2005). Parametric sensitivity in Chemical Systems. Cambridge University Press.

Volcke, E.I.P., Sbarciog, M., Noldus, E.J.L., De Beats y Loccufier, M. (2010). Steady state multiplicity of two-step biological conversion systems with general kinetics. Mathematical Biosciences, 228, 160-170.

Wang,H., Zhang, N., Qiu, T., Zhao, J., He, X. y Chen, B. (2013). A process design framework for considering the stability of steady state operating points and Hopf singularity point in chemical processes. Chemical Engineering Science, 99, 252-264.
How to Cite
Carrillo-Ahumada, J., Paramo-Calderón, D., Aparicio-Saguilán, A., Rodríguez-Jimenes, G., & García-Alvarado, M. (2020). APPROACH OF A MEASUREMENT OF LINEARIZED REPRESENTATION OF A NONLINEAR SYSTEM. APPLICATION TO (BIO)CHEMICAL REACTORS. Revista Mexicana De Ingeniería Química, 13(2), 631-647. Retrieved from
Simulation and control