EVALUATION OF POLYAROMATIC HYDROCARBON AND OXYGEN VOLUMETRIC TRANSFER COEFFICIENT ON MULTI-PHASE SYSTEM (LIQUID-LIQUID AND LIQUID-LIQUID-GAS): BIOCOMPATIBLE SOLVENT CHARGE EFFECT

  • A. Jiménez-González
  • V. Vargas-García
  • M.A Lizardi-Jiménez
  • S.A. Medina-Moreno
Keywords: naphthalene, phenanthrene, volumetric mass transfer coefficients, silicone oil, heptamethylnonane

Abstract

In this work were determined in a stirred tank system with the phases non-miscible silicon oil and heptamethylnonane, the mass transfer volumetric coefficient (KLaH) of naphthalene and phenanthrene (liquid-liquid system). The KLaH values were correlated with the Reynolds number, observing that KLaH let of be a function of the Reynols for values NRe ≥17,000. The values reached of KLaH were 52 and 44 h-1 for naphthalene and 69 and 62 h-1 for phenanthrene both with silicon oil and heptamethylnonane respectively. Also was evaluated the volumetric charge effect of the non-miscible solvents, in the volumetric oxygen transfer coeffocient (kLa) for the same stirred tank system with aeration (liquid-liquid-gas system). The addition of each one of the solvents led to strong decrease of the kLa, being more marked the effect with the increase in the volumetric charge of the solvents. The kLa in the aqueous medium without solvent decreased of a maximum of 49 h-1 up to minimums of 22 h-1 with oil silicon and 7 h-1 with heptamethylnonane, in both cases with a volumetric charge of 5% of each solvent. The decrease in the kLa was probably due to a negative effect of the dynamic and kinematic viscosities of both solvents over: the oxygen diffusivity, thickness of the boundary layer and the specific interfacial area of the bubbles
air.

References

Akita, K., Yoshida, F. (1974). Bubble size interfacial Area and Liquid-Phase Mass Transfer Coefficient in Bubble columns. Industrial & Engineering Chemistry Process Design and Development 13, 84-91.

Aldric, J.M., Lecomte, J.P., Thonart P. (2009). Study on mass transfer of isopropylbenzene and oxygen in a two-phase partitioning bioreactor in the presence of silicone oil. Applied Biochemistry and Biotechnology 153, 67-79.

Bamforth, S.M., Singleton I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology 80, 723-736.

Bouchez, M., Blanchet, D., Vandecasteele, J.P. (1995). Substrate availability in phenanthrene biodegradation: transfer mechanisms and influence on metabolism. Applied Microbiology and Biotechnology 43, 952-960.

Cariaga, E., Vergara-Fernández A., Levano M., Vergaray N. (2013). Numerical simulation of the water saturation at the interface between homogeneous porous medium. Revista Mexicana de Ingeniería Química 12, 527-539.

Cerniglia, C.E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 31, 51- 368.

Daugulis, A. J. (2001). Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends in Biotechnology 19, 457-462.

Dumont, E., Le Cloirec, Y. A. P. (2006). Eect of organic solvents on oxygen mass transfer in multiphase systems: Application to bioreactors in environmental protection. Biochemical Engineering Journal 30, 245-252.

Eibes, G., McCann,C., Pedezert, A., Moreira, M.T., Feijoo, G., Lema, J.M. (2010). Study of mass transfer and biocatalyst stability for the enzymatic degradation of anthracene in a twophase partitioning bioreactor. Biochemical Engineering Journal 51, 79-85.

Galaction, A.I., Cascaval, D., Oniscu, C., Turnea, M. (2004). Enhancement of oxygen mass transfer in stirred bioreactors using oxygenvectors. 1. Simulated fermentation broths. Bioprocess Biosyst Eng 26, 231-238.

Juhasz, A.L., Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation 45, 57-88.

Ki-Hyun Kim., Shamin Ara Jahan., Ehsanul Kabir., Richard J.C. Brown. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health eects. Environment International 60, 71-80.

Lizardi-Jiménez, M.A., Leal-Bautista, R.M., Ordaz, A., Reyna-Velarde, R. (2015). Airlift bioreactors for hydrocarbon water pollution remediation in a tourism development pole. Desalination and Water Treatment 54, 44-49.

Lizardi-Jiménez, M.A., Saucedo-Casta˜neda G., Thalasso F., Gutiérrez-Rojas M. (2012). Simultaneous hexadecane and oxygen transfer rate on the production of an oil-degrading consortium in a three-phase airlift bioreactor. Chemical Engineering Journal 187, 160-165.

Lizardi-Jiménez, M.A., Saucedo-Casta˜neda, G., Thalasso, F., Gutiérrez-Rojas, M. (2011). Dynamic technique to determine hexadecane transfer rate from organic phase to aqueous phase in a three-phase bioreactor. International Journal of Chemical Reactor Engineering 9, S3.

Lópes da Silva, T., Calado, V., Silva, N., Mendes, R.L., Alves, S.S., Vasconcelos, J.M.T., Reis, A. (2006). Eects of hydrocarbon additions on gas-liquid mass transfer coecients in biphasic bioreactors. Biotechnology and Bioprocess Engineering 11, 245-250.

Medina-Moreno, S.A., Huerta-Ochoa, S., Lucho- Constantino, C.A., Aguilera-Vázquez, L. Jiménez-González, A., Gutiérrez-Rojas, M. (2009). Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo intemperizados en suelos y sedimentos. Revista Mexicana de Ingeniería Química 8, 245-258.

Medina-Moreno, S.A., Jiménez-González, A., Gutiérrez-Rojas, M., Lizardi-Jiménez, M.A. (2014). Hydrocarbon pollution in underwater sinkholes as a function of tourism development in the Mexican Caribbean. Revista Mexicana de Ingeniería Química 13, 509-516.

Melgarejo-Torres, R., Castillo-Araiza, C.O., Duttac, A., Bény, G., Torres-Martínez, D., Gutiérrez- Rojas, M., Lye, G.J., Huerta-Ochoa, S. (2015). Mathematical model of a three phase partitioning bioreactor for conversion of ketones using whole cells. Chemical Engineering Journal 260, 765-775

Melgarejo-Torres, R., Torres-Martínez, D., Castillo- Araiza, C.O., Arriaga-Juárez, C., Gutiérrez- Rojas, M., Esponda-Aguilar, P., Aroca, G., Lye, G.J., Huerta-Ochoa, S. (2012). Mass transfer coefficient determination in three biphasic systems (water-ionic liquid) using a modified Lewis cell. Chemical Engineering Journal 182, 702-707.

Nielsen, D.R., Daugulis, A.J., McLellan, P.J. (2003). A novel method of simulating oxygen mass transfer in two-phase partitioning bioreactors. Biotechnology and Bioengineering 83, 735-742.

Nisbet, I.C.T., LaGoy, P.K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 16, 290-300.

Palmerín-Carre˜no, D.M., Rutiaga-Qui˜nones, O.M., Verde-Calvo, J.R., Huerta-Ochoa, S. (2014). Bioconversion of (+)-nootkatoone by Botryodiplodia theobromae using a membrane aerated biofilm reactor. Revista Mexicana de Ingeniería Química 13, 757-764.

Torres-Martínez, D., Melgarejo-Torres, R., Gutiérrez-Rojas, M., Aguilera-Vázquez, L., Micheletti, M., Lyec, G.J., Huerta-Ochoa, S. (2009). Hydrodynamic and oxygen mass transfer studies in a three-phase (air-water-ionic liquid) stirred tank bioreactor. Biochemical Engineering Journal 45, 209-217.

Tribe, L. A., Briens, C. L, Margaritis, A. (1995). Determination of the volumetric mass determination coecient kLa using the dynamic “gas out-gas in” method. Analysis of errors caused by dissolved oxygen probes. Biotechnology and Bioengineering 46, 388-392.

Yu, R., Nemati, M., Hill, G., Headley, J. (2006). Mass transfer and bioremediation of naphthalene and methyl naphthalenes in baed and bead mill bioreactors. The Canadian Journal of Chemical Engineering 84, 349-355.
Published
2020-02-25
How to Cite
Jiménez-González, A., Vargas-García, V., Lizardi-Jiménez, M., & Medina-Moreno, S. (2020). EVALUATION OF POLYAROMATIC HYDROCARBON AND OXYGEN VOLUMETRIC TRANSFER COEFFICIENT ON MULTI-PHASE SYSTEM (LIQUID-LIQUID AND LIQUID-LIQUID-GAS): BIOCOMPATIBLE SOLVENT CHARGE EFFECT. Revista Mexicana De Ingeniería Química, 14(3), 723-734. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1399
Section
Transport phenomena

Most read articles by the same author(s)