• E. Castañeda-Pérez Departamento de Ingeniería Bioquímica. Escuela Nacional de Ciencias Biológicas, IPN
  • G.I. Osorio-Revilla Departamento de Ingeniería Bioquímica. Escuela Nacional de Ciencias Biológicas, IPN
  • T. Gallardo-Velázquez Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, IPN
  • J.B. Proal-Nájera Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, CIIDIR-Durango, Instituto Politécnico Nacional
Keywords: FTIR-HATR, chemometrics, drying, degradation, bioactive compounds


The use of Fourier Transform Infrared Spectroscopy (FTIR) coupled to multivariate analysis made possible to monitor the degradation of bioactive compounds during the drying process of red pepper in a tray dryer. The FTIR spectra were obtained at different drying times and temperatures and showed variation among them. This behavior provided the possibility of assessing the degradation of functional compounds present in red pepper along the drying process by a chemometric model. The chemometric model obtained, correlated the quality parameters considered at different drying times and the corresponding FTIR spectra, and was developed with the PLS algorithm, which showed the best correlation between the bioactive compounds and the spectral images, obtaining R2 values greater than 0.99 for all properties analyzed. Critical regions during the drying process were identified where change in the operating conditions could be performed to preserve the product quality. Drying times larger than those required to give final product moisture of 0.1 d.b. caused severe degradation in all analyzed parameters (carotenoids, ascorbic acid, total phenols and antioxidant activity).


Abu-Zahra, T.R. (2011). Influence of agricultural practices of fruit quality of bell pepper. Pakistan Journal of Biological Science 14, 876-881.

Akpinar, E.K., Bicer, Y. y Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering 59, 99-104.

Amador-Hernández, .J., Velázquez-Manzanares. M., Anaya, G.E. y Enríquez, R. (2011). Seguimiento en tiempo real de la degradación de compuestos orgánicos mediante procesos fotocatalíticos heterogéneos con TiO2: Revisión. Revista Mexicana de Ingeniería Química 10, 471-486.

Arslan, D. y Ozcan, M.M. (2011). Dehydration ¨ of red bell-pepper (Capsicum annuum L.) change in drying behavior, color and antioxidant content. Food and Bioproducts Processing 89, 504-513.

Bolio-López, G.I., Veleva, L., Valadez-González, A. y Owen, Q. (2013). Weathering and biodegradation of polylactic acid composite reinforced with cellulose whiskers. Revista Mexicana de Ingeniería Química 12, 143-153.

Cozzolino, D., Cynkar, W., Janik, L., Dambergs, R.G. y Gishen, M. (2006). Analysis of grape and wine by near infrared spectroscopy - A review. Journal of Near Infrared Spectroscopy 14, 279-289.

Cozzolino, D., Cynkar, W.U., Shah, N. y Smith, P. (2011). Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Research International 44, 1888-1896.

Cui, Z. W., Xu, S.Y. y Sun, D. W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Drying Technology 22, 563-575.

Di Scala, K. y Capriste, G. (2008). Drying kinetics and quality changes during drying of red pepper. LWT Food Science and Technology 41, 789-795.

Doymaz, I y Pala, M. (2002). Hot-air Drying characteristics of red pepper. Journal of Food Engineering 55, 331-335.

Ergünes, G. y Tarhan, S. (2006). Color retention of red peppers by chemical pretreatments during greenhouse and open sun drying. Journal of Food Engineering 76, 446-452.

Floegel, A., Kim, D., Chung, S., Koo, S. y Chun, O. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis 24, 1043-1048.

Flores N.C. (2007). Drying Foods Food and Nutrition Publications. E-322 Drying Foods. New Mexico State University.

Gallardo-Velázquez, T., Osorio-Revilla, G., Zúñiga de Loa, M. y Rivera-Espinoza, Y. (2009). Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Research International 42, 313-318.

Ghasemnezhad, M., Sherafati, M. y Payvast, G.A. (2011). Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annuum) fruits at two different harvest times. Journal of Functional Foods 3, 44-49.

Goula, A.M., Adamopoulos, K.G., Chatzitakis, P.C. y Nikas, V.A. (2006). Prediction of lycopene degradation during a drying process of tomato pulp. Journal of Food Engineering 74, 37-46.

Hernández-Martínez, M, Gallardo-Velázquez, T. y Osorio-Revilla, G. (2010). Rapid characterization and identification of fatty acids in margarines using horizontal attenuate total reflectance Fourier transform infrared spectroscopy (HATR-FTIR). European Food Research and Technology 231, 321-329.

Kacuraková, M., Capek, P., Sasinková, V., Wellner, N. y Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers 43, 195-203.

Kaymak-Ertekin, F. y Gedik, A. (2005). Kinetic modelling of quality deterioration in onions during drying and storage. Journal of Food Engineering 68, 443-453.

Kim, S., Lee, K.W., Park, J., Lee, H.J. y Hwang, I.K. (2006). Effect of drying in antioxidant activity and changes of ascorbic acid and color by different drying and storage in Korean red pepper (Capsicum annuum L.). International Journal of Food Science and Technology 41, 90- 95.

Marfil, P.H.M., Santos, E.M. y Telis, V.R.N. (2008). Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT Food Science and Technology 41, 1642-1647.

Martens, H., y Naes, T. (1989). Methods for calibration: Assessment, validation and choice of calibration methods; pretreatment and linearization. Multivariate calibration. Chichester, UK: John Wiley y Sons Ltd.

Meza-Márquez, O.G., Gallardo-Velázquez, T. y Osorio-Revilla, G. (2010). Application of mid infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterant in minced beef. Meat Science 86, 511-519.

Meza-Márquez, O.G., Gallardo-Velázquez, T., ´ Osorio-Revilla, G. y Dorantes-Álvarez, L. (2012). Detection of clenbuterol in beef meat, liver and kidney by mid-infrared spectroscopy (FT-Mid IR) and multivariable analysis. International Journal of Food Science and Technology 47, 2342-2351.

Mínguez-Mosquera, .M.I. y Hornero-Mendez, D. (1994). Comparative study of the effect of paprika processing on the carotenoids in peppers (Capsicum anuumm) of the Bola and Agridulce varieties. Journal of Agricultural and Food Chemistry 42, 1555-1500.

Navarro, J.M., Flores, P., Garrido, C., Mart´ınez, V. (2006). Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry 96, 66-73.

Orikasa, T., Wu, L., Shiina, T. y Tagaka, A. (2008). Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering 85, 303- 308.

Osuna-García, J. A. y Wall, M. M. (1997). Prestorage moisture content affects color loss of ground paprika (Capsicum annuum L.) under storage. Journal of Food Quality 21, 251-259.

PC-022-2005 (2005). Pliego de condiciones para el uso de la marca oficial México calidad suprema en pimiento morrón. México. Bancomext.

PerkinElmer. (1991). Quant+. Software for quantitative multicomponent analysis using Chemometric methods. Massachusetts, USA: PerkinElmer LLC.

Quiroz-Reyes, C.N., Aguilar-Méndez, M.A., Ramírez-Ortíz, M.E. y Ronquillo-De Jesús, E. (2013). Comparative study of ultrasound and maceration techniques for the extraction of polyphenols from cocoa beans (Theobroma cacao L.). Revista Mexicana de Ingeniería Química 12, 11-18.

Ramesh, M.N., Wolf, W., Trevini, D. y Jung, G. (2001). Influence of processing parameters on the drying of spice paprika. Journal of Food Engineering 49, 63-72.

Robinson, W.B. y Stotz, E. (1945). The indophenolxylene extraction method for ascorbic acid and modification for interfering substances. The Journal of Biological Chemistry 160, 217-225.

Rodríguez-Amaya, D.B. (2001). A Guide to Carotenoid Analysis in Foods. OMNI Washington, D. C.

Sinelli, N., Casiraghi, E., Barzaghi, S., Brambilla, A. y Giovanelli, G. (2011). Near infrared (NIR) spectroscopy as a tool for monitoring blueberry osmo-air dehydration process. Food Research International 44, 1427-1433.

Sun, D.W. (2009). Infrared Spectroscopy for Food Quality Analysis and Control. Pp. 424. Elsevier, Amsterdam, Netherlands

Topuz, A., Dincer, C., Özdemir, K. S., Feng, H. y Kushad, M. (2011). Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chemistry 129, 860-865.

Treybal, R. E. (1988). Operaciones de Transferencia de Masa. Pp. 730-742, Editorial Mc. Graw Hill. 2 a . Edicion, México, D.F.

Viveros-Contreras, R., Tellez-Medina, D.I., Perea-Flores, M. J., Alamilla-Beltran, L., Cornejo-Mazon, M., Beristain-Guevara, C. I., AzuaraNieto, E y Gutierrez-López, G. F. (2013). Encapsulation of ascorbic acid into calcium alginate matrices through coacervation coupled to freeze-drying. Revista Mexicana de Ingeniería Química 12, 29-39
How to Cite
Castañeda-Pérez, E., Osorio-Revilla, G., Gallardo-Velázquez, T., & Proal-Nájera, J. (2020). USE OF FTIR-HATR COUPLED TO MULTIVARIATE ANALYSIS TO MONITOR THE DEGRADATION OF BIOACTIVE COMPOUNDS DURING DRYING OF RED PEPPER. Revista Mexicana De Ingeniería Química, 12(2), 193-204. Retrieved from
Food Engineering