• L. Veleva Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad-Mérida
  • A. García-González Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad-Mérida
  • G. Pérez Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad-Mériida
Keywords: aluminum, fractal quantification, atmospheric corrosion, pitting corrosion, self-similarity


During three annual exposure periods, aluminum samples of wire, used for transmission of high voltage electricity, were exposed at outdoor atmospheric marine-coastal and rural environments, located in the humid tropical climate of Yucatan Peninsula, in the Mexican gulf. In atmospheric conditions the naturally formed aluminum oxide layer can be destroyed by the presence of chlorides, causing pitting localized corrosion attack, difficult for evaluation. The concepts of fractal geometry and self-similarity were used in this study for evaluation of the pitting corrosion as a function of time, making a statistics of the frequency of appearance of pits versus the area occupied by them. The data showed that the distribution of the pits follows a power law. The exponent of self-similarity varied between 1.7-1.9 and it is relatively stable with the progress of corrosion progress. The progress of pits in area and frequency is more pronounced in time in the marine-coastal atmosphere, compared to pitting developed in rural- urban one. The concepts of fractal geometry and self-similarity can quantify the extent of localized corrosion with time, as nondestructive form and rapid method.


40ISO 9225-92. (1992). Corrosion of metals and alloys, Corrosivity of atmospheres, Measurement of Pollution. ISO Int., Geneva.

ASTM Guide G46-94. (2005).Standard guide for examination and evaluation of pitting corrosion. West Conshohoken. PA, ASTM Int.

Bockris, J. O’M. and Khan S. U. M. (1994). Surface Electrochemistry: A Molecular Level Approach. Plenum Press, London.

Bunde A. and Havlin S. Eds. (1995). Fractals and Disordered Systems. Springer. Second revised and Enlarged Edition.

Burstein G.T., Liu C., Souto R.M. and Vines S.P. (2004). Origins of pitting corrosion. Corrosion Engineering, Science and Technology 39, 25-30.

Cole I.S., Holgate R., Kao P. and Ganther W. (1995). The rate of drying of moisture from a metal surface and its implication for time of wetness. Corrosion Science 37, 455-465.

Corvo F., Haces C., Betancourt N., Maldonado L., Veleva L., EcheverriaM., Rincon O. and Rincon A. (1997). Atmospheric corrosivity in the Caribbean area. Corrosion Science 39, 823-833.

Costa J.M., Sagués F. and Vilarrasa M. (1991). Fractal patterns from corrosion pitting. Corrosion Science 32, 665-668.

Dean S.W. and Reiser D.B. (1995). In: Atmospheric Corrosion, (W.W. Kirk and H. H. Lawson Eds.), Pp. 3-10. ASTM STP 1239, ASTM Int. West Conshohocken, PA.

Evans U. (1965). Electrochemical mechanism for atmospheric rusting. Nature 206, 980-982.

Foley R.T. (1986). Localized Corrosion of Aluminum Alloys - a Review. Corrosion 42, 5, 227-286.

Gordon N.L., Rood W. and Edney R. (2001). Introducing Fractal Geometry. Appignanesi, Ed. Icon Books Ltd. Cambridge, UK. Graedel T.E. (1989). Corrosion mechanism for aluminum exposed to the atmosphere. Journal of The Electrochemical Society 136, 204C-211C.

Holten T., Jossang T., Meakin P. and Feder J. (1994). Fractal characterization of two-dimensional aluminum corrosion fronts. Physical Review E 50, 754-759.

ISO 11463-93. (1993). Corrosion of metals and alloys, Evaluation of pitting corrosion. ISO Int. Geneva.

ISO 8407-93. (1993). Corrosion of metals and alloys, Removal of corrosion products from corrosion test specimens. ISO Int. Geneva. ISO 9223:92. (1992). Corrosion of Metals and Alloys. Corrosivity of Atmospheres - Classification. ISO Int. Geneva. ISO 9226-92. (1992). Corrosion of metals and alloys, Corrosivity of atmospheres, Method of determination of corrosion rate of standard specimens for the evaluation of corrosivity. ISO Int. Geneva.

Kelly R.G. (2005). Corrosion Tests and Standards, Application and Interpretation. In: ASTM Int., (R. Baboian Ed.) 2nd Ed. Pp. 211-220. West Conshohoken, PA.

Lee T.S., Baker E.A. (1982). Atmospheric Corrosion of Metals. In: ASTM STP 767, ASTM Int. (S. W. Dean Jr. and E. C. Rhea Eds.). Pp. 250-266.
West Conshohocken, PA. Leygraf C., Graedel T. (2000). Atmospheric Corrosion. Wiley-Interscience. Pennington, NY.

Mandelbrot B. B. (1983). The Geometry of Nature. W. H. Freeman and Company. New York.

Mandelbrot B. B. (2004). The Fractal Geometry of Nature,W. H. Freeman and Company New York. McCafferty E. (2003). Sequence of steps in the pitting of aluminum by chloride ions. Corrosion Science 45, 1421-1438.

Meakin P., Jossand T. and Feder J. (1993). Simple passivation and depassivation model for pitting corrosion. Physical Review E 48, 2906-2916.

Pourbaix M. (1974). Atlas of Electrochemical Equilibria in Aqueous Solutions. NACE Cebelcor. Houston, Tx. Reigada R., Sagués F. and Costa J.M. (1994). A Monte-Carlo Simulation of Localized Corrosion. Journal of Chemical Physics 101, 2329-2337.

Roberge P.R. and Trethewey K.R. (1995). The fractal dimension of corroded aluminium surfaces. Journal of Applied Electrochemistry 25, 962-966.

Santana-Rodríguez J. J., Santana-Hernández F. J. and González-González J.E. (2003). The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, inc and aluminium in a limited geographic zone with different types of environment. Corrosion Science 45, 799-815.

Shreir L.L., Jarman R.A., Burstein G.T. Eds. (1994). Metal/Environment reactions. In: Corrosion, Vol.1, 3rd Edition. Butterworth-Heinemann, Oxford, UK.

Syrett B.C., Gorman J.A., AreyM.L., Koch G.H. and Jacobson G.A. (2002). Cost of corrosion in the Electric Power Industry. Materials Performance 41, 8-22.

Szklarska-Smialowska Z. (1999). Pitting corrosion of aluminum. Corrosion Science 41, 1743-1767.

Szklarska-Smialowska Z. (1971). Effect of the ratio of Cl−/SO2− 4 516 in solution on the pitting corrosion of Ni. Corrosion Science 11, 209-221.

Tidblad J., Mikhailov A.A. and Kucera V. (2000). Model for the prediction of the time of wetness from average annual data on relative air humidity and air temperature. Protection of Metals 36, 533-540.

Veleva L., Peréz G. and Acosta M. (1997). Statistical analysis of the temperature-humidity complex and time of wetness of a tropical climate in the Yucatan Peninsula in Mexico. Atmospheric Environment 31, 773-776.

Veleva L., Maldonado L. (1998). Classification of the atmosphere corrosivity in the humid tropical climate. British Corrosion Journal 33, 53-57.

Veleva L. and Alpuche-Aviles M.A. (2002). Outdoor Atmospheric Corrosion. In: H. E. Townsend Ed. ASTM STP 1421. ASTM Int. West Conshohocken, PA, Pp. 48-58.

Veleva L., Kane R. (2003). Atmospheric Corrosion: Fundamentals, Testing and Protection. In: Corrosion Vol.13A . Fundamentals, Testing and Protection (S.D. Cramer and B.S. Covinio Eds.). ASM Int. OH, Pp. 196-209.

Vicsek T. (1999). Fractal Growth phenomena. World Scientific Publishing Co. Pte. Ltd. Singapore. Wiersma B. J., Hebert K.R. (1991). Observations of the early stages of the pitting corrosion of aluminum. Journal of the Electrochemical Society 138, 48-54.
How to Cite
Veleva, L., García-González, A., & Pérez, G. (2020). FRACTAL QUANTIFICATION OF ALUMINUM PITTING CORROSION INDUCED BY HUMID TROPICAL CLIMATE. Revista Mexicana De Ingeniería Química, 12(1), 65-72. Retrieved from
Catalysis, kinetics and reactors