• S.C. Araujo-Ferrer Petróleos de Venezuela (PDVSA)-Intevep
  • A. De Almeida Invensys Systems Venezuela
  • A. Zabala
  • A. Granados
Keywords: Fischer-Tropsch, catalyst, support, selectivity, deactivation


Fischer-Tropsch process involves synthesis gas reaction (H2 and CO), by means of a catalyst in a fixed or fluidized bed reactor, in order to obtain hydrocarbons of longer chains than methane. Liquid products derived from this synthesis are: diesel, gasoline, synthetic oil, methanol, dimethyl ether, olefins, gasoline, ammonia, etc., which have a high added value. The currently known catalysts for Fischer-Tropsch synthesis are made of nickel, to hydrogenation of fats and chemicals, iron and cobalt, to obtain hydrocarbons, and copper for the synthesis of alcohols. These catalysts have been modified to increase their efficiency and selectivity, so the aim of this paper is to present an organized research on various types of catalysts used in Fischer-Tropsch process, in order to summarize main points to be considered to ensure a better relation cost / performance in this type of processes.


Anderson, R. (1956). Kinetics and reaction mechanism of the Fischer-Tropsch synthesis. En: Catalysis-Volume IV, Pp. 257-372. Reinhold Publishing. New York.

Bahome, M., Jewell, L., Hildebrandt, D., Glasser, D. y Coville, N. (2005). Fischer-Trospch synthesis over iron catalysts supported on carbon nanotubes. Applied Catalysis A: General 287, 60-67.

Barbier, A., Tuel, A., Arcon, I., Kodre, A. y Martin, G. (2001). Characterization and catalytic behavior of Co/SiO2 catalysts: Influence of dispersion in the Fischer-Tropsch reaction. Journal of Catalysis 200, 106-116.

Bartholomew, C. y Bowman, R. (1985). Sulfur poisoning of cobalt and iron Fischer-Tropsch catalysts. Applied Catalysis 15, 59-67.

Bartholomew, C. (1990). Recent technological developments in Fischer-Tropsch catalysis. Catalysis Letters 7, 303-316.

Bartholomew, C. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General 212, 17-60.

Bezemer, G., Bitter, J., Kuipers, H., Oosterbeek, H., Holewijn, J., Xu, X., Kapteijn, F., Van Dillen, A. y De Jong, K. (2006). Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. Journal of the American Chemical Society 128, 3956-3964.

Borg, Ø., Eri, S., Blekkan, E., Storsæter, S., Wigum, H., Rytter, E. y Holmen A. (2007). FischerTrospch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. Journal of Catalysis 248, 89-100.

Borg, Ø. Dietzel, P., Spjelkavik, A., Tveten, E., Walmsley, J., Diplas, S., Eri, S., Holmen, A. y Rytter, E. (2008). Fischer-Tropsch synthesis : Cobalt particle size and support effects on intrinsic activity and product distribution. Journal of Catalysis 259, 161-164.

Chen, W., Fan, Z., Pan, X. y Bao, X. (2008). Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Journal of the American Chemical Society 130, 9414-9419.

Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G. y Martin, C. (2008). A DFT study of the chain growth probability in Fischer-Tropsch synthesis. Journal of Catalysis 257, 221-228.

Chu, W., Chernavskii, P., Gengembre, L., Pankina, G., Fongarland, P. y Khodakov, A. (2007). Cobalt species in promoted cobalt aluminasupported Fischer-Tropsch catalysts. Journal of Catalysis 252, 215-230.

Davis, B. (2002). Overview of reactors for liquid phase Fischer-Tropsch synthesis. Catalysis Today 71, 249-300.

De Klerk, A. y Furimsky, E. (2010). Catalysis in the refining of Fischer-Tropsch syncrude. En: Royal Society of Chemistry. London (UK).

Dry, M. (1981). Catalysis: Science and Technology, Volume 1. Editorial Springer-Verlag. Berlin. 159.

Dry, M. (2002). The Fischer-Tropsch process: 1950- 2000. Catalysis Today 71, 227-241.

Dumond, F., Marceau, E., Che, M. (2007). A study of cobalt speciation in Co/Al2O3 catalysts prepared from solutions of cobaltethylenediamine complexes. The Journal of Physical Chemistry C 111, 4780-4789.

ExxonMobil Research and Engineering Company. (2003). Fischer-Tropsch Catalyst Enhancement. Lapidus, A. y col. U.S. Patent No.: 6,531,518.

Friedel, R. y Anderson, A. (1950). Composition of synthetic liquid fuels. I. Product distribution and analysis of C5-C8 paraffin isomers from cobalt catalyst. Journal of the American Chemical Society 72, 1212-1215.

Girardon, J., Quinet, E., Griboval-Constant, A., Chernavskii, P., Gengembre, L., y Khodakov, A. (2007). Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer-Tropsch catalysts. Journal of Catalysis 248, 143-157.

Gruver, V., Zhang, X., Engman, J., Robota, H., Suib S. y Polverjan M. (2004). Deactivation of a Fischer-Tropsch catalyst through the formation of cobalt carbide under laboratory slurry reactor conditions. Preprints Papers-American Chemical Society, Division of Petroleum Chemistry Fischer-Trospch: Materials, Theories, and Practice Symposium 49, 192-194.

Hedrick, S., Chuang, S., Pant, A. y Dastidar, A. (2000). Activity and selectivity of Group VIII, alkali-promoted Mn-Ni, and Mo-based catalysts for C+2 oxygenate synthesis from the CO hydrogenation and CO/H2/C2H4 reactions. Catalysis Today 55, 247-257.

Hofer, L. (1956). Crystalline phases and their relation to Fischer-Tropsch catalyst. En: Catalysis-Volume IV, Pp. 373-442. Reinhold Publishing. New York.

Huber, G., Iborra, S. y Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews 106, 4044-4098.

Huffman, G. (2011). Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis of liquid fuels from coal to minimize carbon dioxide emissions. Fuel 90, 2671-2676.

Iglesia, E. (1999) Structural and Catalytic Characterization of the Mechanism and Site Requirements in Fe-Catalyzed Fischer-Tropsch Synthesis. Reporte de investigación. Universidad de California en Berkeley. Departamento de Ingeniería Química

Iwasaki, T., Onodera, Y., Hayashi, H., Ebina, T., Nagase, T., Torii, K., Kataja, K. y Chartterjee, A. (1998). Use of silicate crystallite mesoporous material as catalyst support for Fischer-Tropsch reaction. Applied Surface Science 130-132, 845-850.

Jean-Marie, A., Griboval-Constant, A., Khodakov, A. y Diehl, F. (2011) Influence of substoichiometric sorbitol addition modes on the structure and catalytic performance of aluminasupported cobalt Fischer-Tropsch catalysts. Catalysis Today 171, 180-185.

Jin, Y. y Dayte, A. (2000). Phase transformations in iron Fischer-Trospch catalysts during temperature-programmed reduction. Journal of Catalysis 196, 8-17.

Johnson, B., Bartholomew, C. y Goodman, D. (1991). The role of surface structure and dispersion in CO hydrogenation on cobalt. Journal of Catalysis 128, 231-247.

Jongsomjit, B. y Goodwin, J. (2002). Co-support compound in Co/Al2O3 catalysts: effect of reduction gas containing CO. Catalysis Today 77, 191-204.

Khodakov, A., Griboval-Constant, A., Bechara, R. y Zholobenko, V. (2002). Pore size effects in Fischer Tropsch synthesis over CobaltSupported Mesoporous Silicas. Journal of Catalysis 206, 230-241.

Khodakov, A., Chu, W. y Fongarland, P. (2007). Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of longchain hydrocarbons and clean fuels. Chemical Reviews 107, 1692-1744.

Khodakov, A. (2009 a). Enhancing cobalt dispersion in supported Fischer-Tropsch catalysts via controlled decomposition of cobalt precursors. Brazilian Journal of Physics 39, 171-175.

Khodakov, A. (2009 b). Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance. Catalysis Today 144, 251-257.

Kölbel, H. y Ralek, M. (1980). The Fischer-Tropsch synthesis in the liquid phase. Catalysis Reviews - Science and Engineering 21, 225-274.

Moodley, D., Van De Loosdrecht, J., Saib, A. y Niemantsverdriet, H. (2010). The formation and influence of carbon on cobalt-based FischerTropsch synthesis catalysts. En: Advances in Fischer-Tropsch synthesis, catalysts, and catalysis. Chapter 4, Pp. 49-81. Editorial CRC Press. Boca Raton, Florida.

Moodley, D., Saib, A., Van De Loosdrecht, J., Welker-Nieuwoudt, C., Sigwebela, B. y Niemantsverdriet, J. (2011). The impact of cobalt aluminate formation on the deactivation of cobalt-based Fischer-Tropsch synthesis catalysts. Catalysis Today 171, 192-200.

O’Brien. R. y Davis, B. (1998). Impact of copper on an alkali promoted iron Fischer-Tropsch catalyst. University of Kentucky. Center for Applied Energy Research.

Okabe, K., Wei, M. y Arakawa, H. (2003). FischerTropsch Synthesis over Cobalt Catalysts Supported on Mesoporous Metallo-silicates. Energy Fuels 17, 822-828.

Pan, Z. y Bukur, D. (2011). Fischer-Tropsch synthesis on Co/ZnO catalyst-Effect of pretreatment procedure. Applied Catalysis A: General 404, 74-80.

Pirola, C., Bianchi, C., Michele, A., Vitali, S. y Ragaini, V. (2009). Fischer Tropsch and Water Gas Shift chemical regimes on supported ironbased catalysts at high metal loading. Catalysis Communications 10, 823-827.

Rochet, A., Moizan, V., Pichon, C., Diehl, F., Berliet, A. y Briois, V. (2011). In Situ and operando structural characterization of a Fischer-Tropsch supported cobalt catalyst. Catalysis Today 171, 186-191.

Siew, K. y Sadhukhan, J. (2011). Techno-economic performance analysis of bio-oil based FischerTropsch and CHP synthesis platform. Biomass and Bioenergy 35, 3218-3234.

Takeshita, T. y Yamaji, K. (2008). Important roles of Fischer-Tropsch synfuels in the global energy future. Energy Policy 36, 2773-2784.

The Dow Chemical Company. (1985). Selective poisoning of Fischer-Tropsch catalysts. Murchison, C. U.S. Patent No. 4,539,334.

van Berge, P., Van De Lossdrecht, J., Barradas, S. y Van Der Kraan, A. (2000). Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism. Catalysis Today 58, 321-334.

van Steen, E. y Prinsloo, F. (2002). Comparison of preparation methods of carbon nanotubes supported iron Fischer-Tropsch catalysts. Catalysis Today 71, 327-334.

van Vliet, O., Faaij, A. y Turkenburg, W. (2009) Fischer-Tropsch diesel production in a wellto-wheel perspective: A carbon, energy flow and cost analysis. Energy Conversion and Management 50, 855-876.

Vosloo, A. (2001). Fischer-Trospch: a futuristic view. Fuel Processing Technology 71, 149-155.

Wang, G-W., Hao, Q-Q., Liu, Z-T. y Liu, ZW. (2011 a). Fischer-Tropsch synthesis over Co/montmorillonite-Insights into the role of interlayer exchangeable cations. Applied Catalysis A: General 405, 45-54.

Wang, Z-j., Skiles, S., Yang, F., Yan, Z. y Wayne, D. (2011 b) Particle size effects in Fischer-Tropsch synthesis by cobalt. Catalysis Today 181, 75-81.

Zeng, S., Du, Y., Su, H. y Zhang, Y. (2011). Promotion effect of single or mixed rare earths on cobalt-based catalysts for Fischer-Tropsch synthesis. Catalysis Communications 13, 6-9.

Zhang, X., Hirota, R., Kubota, T., Yoneyama, Y. y Tsubaki, N. (2011). Preparation of hierarchically meso-macroporous hematite Fe2O3 using PMMA as imprint template and its reaction performance for Fischer-Tropsch synthesis. Catalysis Communications 13, 44-48.
How to Cite
Araujo-Ferrer, S., De Almeida, A., Zabala, A., & Granados, A. (2020). USE OF CATALYSTS IN FISCHER-TROPSCH PROCESSES. Revista Mexicana De Ingeniería Química, 12(2), 257-269. Retrieved from
Catalysis, kinetics and reactors