• J.A. Colín-Luna UAM-A
  • A.K. Medina-Mendoza UAM-A
  • J.A. De los Reyes UAM-I
  • J. Escobar IMP
  • J. A. Montoya de la Fuente
  • R. Suarez P IER-UNAM
Keywords: hydrodesulfurization, DBT, MCM-41, grafting method, Pt/MCM-41


In this work Pt catalysts (1 wt. %) were prepared by incipient wetness impregnation employing a series of mesoporous Almodified MCM-41 at Al2O3/SiO2 mass ratios equal to 10, 25 y 40 by means of chemical grafting method. Such materials were characterized and tested in the HDS of dibenzothiophene (DBT) and 4,6 dimethyldibenzothiophene (4,6-DMDBT) as model molecules in a batch reactor to similar industrial conditions (320C and 5.5 MPa). These Pt catalysts exhibited higher activity than Pt/Al2O3 used as a reference. The order of activities was: Pt/Al(40)MCM41 > Pt/Al(10)MCM41 ≈ Pt/Al(25)MCM41 > Pt/Al2O3 >> Pt/MCM41and selectivity was mainly to desulfurization products. The most active catalyst was tested in the HDS of 4,6-DMDBT and the results showed an important effect for Al in the HDS of highly refractory molecules.


Alvarez-Amparán, M.A. y Cedeño-Caero, L. (2012). Desulfuración oxidativa de dibenzotiofeno con VOx/ZrO2-Al2O3. Revista Mexicana de Ingeniería Química 11, 431-438.

Babich J.V. y Moulijn J.A. (2003). Science and technology of novel processes for deep desulfuration of oil refinery streams: a review. Fuel 82, 607-631.

Barzetti, T., Selli, E., Moscotti, D. y Forni, L. (1996). Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. Journal of the Chemical Society, Faraday Transactions 92, 1401-1407.

Bataille, F., Lemberton, J-L., Michaud P., Perot, G., Vrinat, M., Lemaire, M., Schulz, E., Breysse, M. y Kasztelan, S. (2000). Alkyldibenzothiophenes Hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism. Journal of Catalysis 191, 409-422.

Bej, S. K., Maity, S. K. y Turaga, U. T. (2004). Search for an Efficient 4,6-DMDBT Hydrodesulfurization Catalyst: A Review of Recent Studies. Energy & Fuels 18, 1227-1237.

Busca G., (1998). Spectroscopic characterization of the acid properties of metal oxide catalysts. Catalysis Today 41, 191-206.

Colín, J.A., de los Reyes, J.A., Altamirano, E., Geantet, C. y Vrinat, M. (2004). Characterization and hydrodesulfurization activities in thiophene, dibenzothiophene and 4,6 dimethyldibenzothiophene for nickel-molybdebum sulfided catalysts supported on zirconium-pillared clays, Presentación del 18- 22 de Abril. Oaxaca, México: International Symposium on Advanced. in Hydroprocessing of Oil Fractions.

Coumans, A. E., Poduval, D. G., Rob van Veen, J.A. y Hensen, E. J.M. (2012). The nature of the sulfur tolerance of amorphous silica-alumina supported NiMo(W) sulfide and Pt hydrogenation catalysts. Applied Catalysis A: General 411-412, 51-59.

Du, M., Qin, Z., Ge, H., Li, X., Lü, Z. y Wang, J. (2010). Enhancement of Pd?Pt/Al2O3 catalyst performance in naphthalene hydrogenation by mixing different molecular sieves in the support. Fuel Processing Technology 91, 1655-1661.

EPA. (2011). Regulations for Clean Diesel Engines and Fuels. Disponible en: http://www.epa.gov/cleandiesel/projects/. Accesado: Noviembre del 2011.

Emeis, C.A. (1993). Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis 141, 347-354.

Ergorova, M. y Prins, R. (2004). Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2O3, CoMo/γ-Al2O3, and Mo/γ -Al2O3 catalysts. Journal of Catalysis 225, 417-427.

Fang, J. y Yongdan, L. (2009). A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule. Catalysis Today 145, 101-107.

Gregg, J. y Sing, K.S.W. (1982). Adsorption, Surface and Porosity. Academic Press, London.

Guo, H., Sun, Y. y Prins, R. (2008). Hydrodesulfurization of 4,6-dimethyldidenzothiophene over Pt supported on γ-Al2O3, SBA-15, and HZSM-5. Catalysis Today 130, 249-253.

Houalla, M.; Nag, N. K.; Sapre, A. V.; Broderick, D. H. y Gates, B. C. (1978). Hydrodesulfurization of Dibenzothiophene Catalyzed by Sulfided CoOMoO3/γ-Al2O3: The Reaction Network. American Institute of Chemical Engineers Journal 24, 1015- 1021.

Kanda, Y., Kobayashi, T., Uemichi, Y., Namba, S. y Sugioka, M. (2006). Effect of aluminum modification on catalytic performance of Pt supported on MCM41 for thiophene hydrodesulfurization. Applied Catalysis A: General 308, 111-118.

Klimova, T., Calderón, M. y Ramírez, J. (2003). Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization. Applied Catalysis A: General 240, 29-40.

Klimova, T., Lizama L., Amezcua, J. C., Roquero, P., Terres, E., Navarrete, J. y Dominguez, J. M. (2004). New NiMo catalysts supported on Al-containig SBA16 for 4,6-DMDBT hidrodesulfuracion E ´ ffect of the alumination method. Catalysis Today 98, 141-150.

Kosslick, H., Lischke, G., Parlitza, B., Storek, W. y Fricke, R. (1999). Acidity and active sites of Al-MCM-41. Applied Catalysis A: General 184, 49-60.

Luan, Z., He, H., Zhou, W., Cheng, C.F. y Klinowski, J. (1995). Effect of Structural Aluminum on the Mesoporous Structure of MCM-41. Journal of the Chemical Society, Faraday Transactions 91, 2955- 2959.

Matsui, T., Harada, M., Ichihashi, Y., Bando, K. K., Matsubayashi, N., Toba, M. y Yoshimura, Y. (2005). Effect of noble metal particle size on the sulfur tolerance of monometallic Pd and Pt catalysts supported on high-silica USY zeolite. Applied Catalysis A: General 286, 249-257.

Mokaya R. y Jones W. (1999). Efficient postsynthesis alumination of MCM-41 using aluminium chlorohydrate containing Al polycations. Journal of Materials Chemistry 9, 551-561.

Montesinos-Castellanos, A., Lima, E., Vázquez-Zavala, A., de los Reyes, J.A. y Vera, M.A. (2012). Industrial Alumina as a support for MoP: Catalytic Activity in the Hydrodesulfurization of Dibenzothiophene. Revista Mexicana de Ingeniería Química 11, 105- 120.

Muhammad, Y. y Li, C. (2011). Dibenzothiophene hydrodesulfurization using in situ generated hydrogen over Pd promoted alumina-based catalysts. Fuel Processing Technology 92, 624-630.

Niquille-Röthlisberger, A. y Prins, R. (2007) Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt, Pd and Pt-Pd catalysts supported on amorphous silica-alumina. Catalysis Today 123, 198- 207.

Park, K. Ch., Yim, D.J. y Ihm, S.K., (2002). Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation. Catalysis Today 74, 281- 290.

Sampieri, A., Pronier, S., Blanchard, J., Breysse, M., Brunet, S., Fajerwerg, K., Louis, C. y Perot, G. ´ (2005). Hydrodesulfurization of dibenzothiophene on MoS2/MCM-41 and MoS2/SBA-15 catalysts prepared by thermal spreading of MoO3. Catalysis Today 107, 537-544.

Simon, L.J., van Ommen, J.G., Jentys, A. y Lercher, J.A. (2002). Sulfur tolerance of Pt/mordenites for benzene hydrogenation: Do Brönsted acid sites participate in ¨ hydrogenation? Catalysis Today 73, 105-112.

Song C. (2003). An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel. Catalysis Today 86, 211-263.

Souza, M.J.B., Marinkovic, B.A., Jardim, P.M., Araujo, A.S., Pedrosa, A.M.G. y Souza, R. R. (2007). HDS of thiophene over CoMo/AlMCM-41 with diffent Si/Al ratios. Applied Catalysis A: General 316, 212-218.

Subhan, F. y Liu, B.S. (2011) Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents. Chemical Engineering Journal 178, 69-77.

Stanislaus, A., Marafi, A. y Rana, M. S., (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today 153, 1-68.

Starkheev, A.Yu. y Kustov, L.M. (1999). Effects of the support on the morphology and electronic properties of supported metal cluster; modern concepts and progress in 1990s. Applied Catalysis A: General 188, 3-35.

Tanabe, K., Misono, M., Ono, Y. y Hattori, H. (1989), New solid acids and bases. Their catalytic properties, Studies in Surfaces Science and Catalysis vol. 51, Elsevier, Kodanska, Tokio.

Venezia, A.M., Murania, A.M., La Parola, V., Pawelec, B. y Fierro, J.L.G., (2010) Post-synthesis alumination of MCM-41: Effect of the acidity on the HDS activity of supported Pd catalysts. Applied Catalysis A: General 383, 211-216.

Vit, Z., Kmentova, H., Kaluza, L., Gulkova, D. y Boaro, M. (2011) Effect of preparation of Pd and Pd-Pt catalysts from acid leached silica-alumina on their activity in HDS of thiophene and benzothiophene. Applied Catalysis B: Enviromental 108-109, 152-160.

Wang, A., Wang, Y., Kabe, T., Chen, Y., Ishihara, A. y Qian, W. (2001). Hydrodesulfurization of Dibenzothiophene over Siliceous MCM-41- Supported Catalysts. I. Sulfided Co-Mo Catalysis. Journal of Catalysis 199, 19-29.

Wang, H. y Prins, R. (2009). Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over NiMoS2/γ-Al2O3. Journal of Catalysis 264, 31-43.
How to Cite
Colín-Luna, J., Medina-Mendoza, A., De los Reyes, J., Escobar, J., Montoya de la Fuente, J. A., & Suarez P, R. (2020). EFFECT OF Si/Al RATIO IN DEEP HYDRODESULFURIZATION OF Pt/Al-MCM41 CATALYTS. Revista Mexicana De Ingeniería Química, 12(2), 271-282. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1466
Catalysis, kinetics and reactors

Most read articles by the same author(s)