ESTIMATION OF THE CONDENSATION HEAT TRANSFER COEFFICIENT FOR STEAM WATER AT LOW PRESSURE IN A COILED DOUBLE TUBE CONDENSER INTEGRATED TO A HEAT TRANSFORMER

  • O. Flores Posgrado en Ingeniería y Ciencias Aplicadas de la Universidad Autónoma del Estado de Morelos
  • V. Velázquez Posgrado en Ingeniería y Ciencias Aplicadas de la Universidad Autónoma del Estado de Morelos
  • M. Meza Posgrado en Ingeniería y Ciencias Aplicadas de la Universidad Autónoma del Estado de Morelos
  • H. Horacio Posgrado en Ingeniería y Ciencias Aplicadas de la Universidad Autónoma del Estado de Morelos
  • D. Juárez Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM)
  • J. A. Hernández Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos (UAEM)
Keywords: heat transfer coefficient, steam, coiled condenser, Wilson Plot, heat transformer

Abstract

An experimental study was conducted to calculate the condensation heat transfer coefficient of steam water in a double helical tube condenser. The steam flows through the inner tube and the cooling water flows in counter flow in the annular section. The operating pressure of the condenser is ranging from 4 kPa to 9 kPa and the Reynolds number of steam is ranging from 7200 to 23200. The mass flux of the cooling water is ranging from 450 kg/m2s to 850 kg/m2s. The heat transfer coefficient is calculated by two methods: the first is based on energy balance and heat transfer equations, and the second by Wilson Plot method. The heat transfer coefficient results shows similarity between both methods and it is ranging from 2200 W/m2◦C to 5500 W/m2◦C. Furthermore, we propose a correlation for the condensation heat transfer coefficient based on the Nusselt, Reynolds and Prandtl numbers.

References

Colorado, D., Hernández, J.A., García-Valladares, O., Huicochea, A. y Siqueiros, J. (2011). Numerical simulation and experimental validation of a helical double-pipe vertical condenser. Applied Energy 88, 2136-2145.

Colorado-Garrido, D., Santoyo-Castelazo, E., Hernández, J.A., García-Valladares, O., Siqueiros, J. y Juarez-Romero, D. (2009). Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation. Applied Energy 86, 1144-1153.

Dittus, F.W. y Boelter, L.M.K. (1930). Heat transfer in automobile radiators of the tubular type. University of California Publications in Engineering 2, 443-461.

Escobar, R.F., Juárez, D., Siqueiros, J., Irles, C. y Hernandez, J.A. (2008). On-line COP estimation for waste energy recovery heat transformer by water purification process. Desalination 222, 666-672.

Fernández-Seara, J., Uhíaa, F. J., Sieres, J. y Campo, A. (2005). Experimental apparatus for measuring heat transfer coefficients by the Wilson Plot method. European Journal of Physics 26, 1-11.

Fernández-Seara, J., Uhíaa F. J., Sieres, J. y Campo, A. (2007). A general review of the Wilson Plot method and its modifications to determine convection coefficients in heat exchange devices. Applied Thermal Engineering 27, 2745-2757.

Garcia-Valladares, O. (2003). Review of intube condensation heat transfer correlations for smooth and microfin tubes. Heat Transfer Engineering 24, 6-24.

Han, J.T., Lin, C.X. y Ebadian, M.A. (2005). Condensation heat transfer and pressure drop characteristics of R-134a in an annular helical pipe. International Communications in Heat and Mass Transfer 32, 1307-1316.


Hernández-Escoto, H. y Hernández-Castro, S. (2006). Energy integration in distillation sequences for the separation of quaternary mixtures. Revista Mexicana de Ingenieria Quimica 5, 17-26

Hernández, J.A., Juárez-Romero, D., Morales, L.I. y Siqueiros, J. (2008). COP prediction for the integration of a water purification process in a heat transformer: with and without energy recycling. Desalination 219, 66-80.

Holland, F. A., Siqueiros, J., Santoyo, S., Heard C. L. y Santoyo E. R. (1999). Water purification using heat pumps. Editorial E & FN Spon, London.

Kakaç¸, S. y Liu, H. (2002). Heat exchangers: selection, rating, and thermal design. Second Edition. Editorial CRC. Boca Raton, Florida.

Kumar, R., Varma, H.K., Agragawal, K.N. y Mohanty, B. (2001). A comprehensive study of modified Wilson Plot technique to determine the heat transfer coefficient during condensation of steam and R-134a over single horizontal plain and finned tubes. Heat Transfer Engineering 22, 3-12.


Medina-Leaños, R., Segovia-Hernandez, J.G. y Felix-Flores, M.G. (2011). Dynamic behavior thermally coupled reactive distillation sequences for different operating conditions. Revista Mexicana de Ingeniería Química 10, 147-160.

Morales-Fuentes, A., Picón-Nuñez, M. y Martinez-García, M. (2005). Effect of the network arrangement on the total heat transfer surface area in cooling systems. Revista Mexicana de Ingeniería Química 5, 93-99.

Manlapaz, R. L., y Churchill, S. W. (1980). Fully developed laminar flow in a helically coiled tube of finite pitch. Chemical Engineering Communications 7, 57-78.

Renny-Timothy, J. y Vijaya Raghavan, G.S. (2007). Thermally dependent viscosity and nonNewtonian flow in a double-pipe helical heat exchanger. Applied Thermal Engineering 27, 862-868.

Paisarn Naphon. (2007). Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. International Communications in Heat and Mass Transfer 34, 321-330.

Prabhanjan, D.G., Raghavan, G.S.V. y Rennie, T.J. (2002). Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. International Communications in Heat and Mass Transfer 29, 185-191.

Rivera, W., Best, R. Hernandez, J., Heard, C.L. y Holland, F.A. (1994). Thermodynamic study of advanced absorption heat transformer I. Single and two stage configurations with heat exchangers. Heat Recovery Systems and CHP 14, 173-183.

Shou-Shing, H., Chihng-Tsung, L. y Anthony, C.K. (1987).Thermal analysis of the performances of helical-type roughened double-pipe heat exchangers. Applied Energy 26, 67-73.

Singh, S.K., Kumar, R. y Mohanty, B. (2001). Heat transfer during condensation of steam over a vertical grid of horizontal integral-fin copper tubes. Applied Thermal Engineering 21, 717- 730.
Published
2020-03-19
How to Cite
Flores, O., Velázquez, V., Meza, M., Horacio, H., Juárez, D., & Hernández, J. A. (2020). ESTIMATION OF THE CONDENSATION HEAT TRANSFER COEFFICIENT FOR STEAM WATER AT LOW PRESSURE IN A COILED DOUBLE TUBE CONDENSER INTEGRATED TO A HEAT TRANSFORMER. Revista Mexicana De Ingeniería Química, 12(2), 303-313. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1473
Section
Process engineering