1-D coordination polymer with helical chirality in octacyanomolybdate (V)- and Nd(III)-based: Synthesis, structure, and Hirshfeld surface analyses
Abstract
A new one-dimensional cyanide-based coordination polymer consisting of octacyanomolybdate(V) and Nd(III) has been synthesized and characterized through a single-crystal X-ray and elemental analysis. The compound consists of one-dimensional chains single strand chiral helix of [(Terpy)(DMF)3(MeOH)Nd-CN-Mo(CN)7] (NdMo-1) (Terpy is 2,2′:6′,2′′-terpyridine, DMF is dimethylformamide), where each Mo(CN)8 entity acts as a two-monodentate bridging ligand towards two Nd(III) ions through two of its eight cyanide groups in cis positions, respectively, in an alternating fashion. Corresponding chains are connected utilizing hydrogen bond interactions to form a three-dimensional supramolecular structure that stabilizes the whole molecule. These interactions have been validated using the Hirshfeld surface analysis.
References
Bok, L. D. C., Leipoldt, J. G., & Basson, S. S. (1975). The preparation of Cs3Mo(CN)8·2H2O and Cs3W(CN)8·2H2O. Zeitschrift Für Anorganische Und Allgemeine Chemie, 415(1), 81–83. https://doi.org/10.1002/zaac.19754150111
Chelebaeva, E., Larionova, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D., Paz, F. A. A., … Guérin, C. (2009). Luminescent and Magnetic Cyano-Bridged Coordination Polymers Containing 4d−4f Ions: Toward Multifunctional Materials. Inorganic Chemistry, 48(13), 5983–5995. https://doi.org/10.1021/ic900378d
Chelebaeva, E., Larionova, J., Guari, Y., Sá Ferreira, R. A., Carlos, L. D., Almeida Paz, F. A., … Guérin, C. (2008). A Luminescent and Magnetic Cyano-Bridged Tb3+−Mo5+ Coordination Polymer: toward Multifunctional Materials. Inorganic Chemistry, 47(3), 775–777. https://doi.org/10.1021/ic702192k
Chorazy, S., Nakabayashi, K., Ohkoshi, S., & Sieklucka, B. (2014). Green to Red Luminescence Switchable by Excitation Light in Cyanido-Bridged TbIII–WV Ferromagnet. Chemistry of Materials, 26(14), 4072–4075. https://doi.org/10.1021/cm501954e
Chorazy, S., Rams, M., Nakabayashi, K., Sieklucka, B., & Ohkoshi, S. (2016). White Light Emissive DyIII Single-Molecule Magnets Sensitized by Diamagnetic [CoIII(CN)6]3− Linkers. Chemistry – A European Journal, 22(22), 7371–7375. https://doi.org/10.1002/chem.201601244
Chorazy, S., Rams, M., Wyczesany, M., Nakabayashi, K., Ohkoshi, S., & Sieklucka, B. (2018). Antiferromagnetic exchange and long-range magnetic ordering in supramolecular networks constructed of hexacyanido-bridged LnIII(3-pyridone)–CrIII (Ln = Gd{,} Tb) chains. CrystEngComm, 20(9), 1271–1281. https://doi.org/10.1039/C7CE02077E
Chorazy, S., Wyczesany, M., & Sieklucka, B. (2017). Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks. Molecules, 22(11), 1902. https://doi.org/10.3390/molecules22111902
Gao, Y., Viciano-Chumillas, M., Toader, A. M., Teat, S. J., Ferbinteanu, M., & Tanase, S. (2018). Cyanide-bridged coordination polymers constructed from lanthanide ions and octacyanometallate building-blocks. Inorg. Chem. Front., 5(8), 1967–1977. https://doi.org/10.1039/C8QI00357B
Goodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., … Tucker, M. G. (2008). Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]. Science, 319(5864), 794–797. https://doi.org/10.1126/science.1151442
He, J., Wang, J., Xu, Q., Wu, X., Dutta, A., Kumar, A., … Abduh, N. A. Y. (2019). Syntheses and crystal structures of new dinuclear lanthanide complexes based on 3-(4-hydroxyphenyl)propanoic acid: Hirshfeld surface analyses and photoluminescence sensing. New J. Chem., 43(34), 13499–13508. https://doi.org/10.1039/C9NJ02213A
Hendrickx, M. F. A., Mironov, V. S., Chibotaru, L. F., & Ceulemans, A. (2004). Assignment of the Electronic Spectra of [Mo(CN)8]4- and [W(CN)8]4- by Ab Initio Calculations. Inorganic Chemistry, 43(10), 3142–3150. https://doi.org/10.1021/ic035282t
Kaes, C., Hosseini, M. W., Rickard, C. E. F., Skelton, B. W., & White, A. H. (1998). Synthesis and Structural Analysis of a Helical Coordination Polymer Formed by the Self-Assembly of a 2,2′-Bipyridine-Based exo-Ditopic Macrocyclic Ligand and Silver Cations. Angewandte Chemie International Edition, 37(7), 920–922. https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<920::AID-ANIE920>3.0.CO;2-O
Kaye, S. S., & Long, J. R. (2005). Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). Journal of the American Chemical Society, 127(18), 6506–6507. https://doi.org/10.1021/ja051168t
Kumar, A., Hüch, V., & Ram, V. J. (2013). Partially reduced thiochromene based oxathiahelicenes: crystallographic{,} computational and Hirschfeld surface analyses. CrystEngComm, 15(35), 7019–7030. https://doi.org/10.1039/C3CE41078A
Ma, S.-L., Ren, S., Ma, Y., & Liao, D.-Z. (2009). Sheet-like of MoV-SmIII assembly containing [MoV(CN)8]3− and Sm3+ ions as building blocks. Journal of Chemical Sciences, 121(4), 421–427. https://doi.org/10.1007/s12039-009-0049-0
Ma, S.-L., Ren, S., Ma, Y., Liao, D.-Z., & Yan, S.-P. (2010). A Novel Bimetallic Chain Based on [Mo(CN)8]3− and Yb3+ Ions as Building Blocks in Which Containing Many Intriguing Structural Features. Journal of Inorganic and Organometallic Polymers and Materials, 20(2), 229–234. https://doi.org/10.1007/s10904-010-9359-4
McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., (37), 3814–3816. https://doi.org/10.1039/B704980C
Muddassir, M., Song, X.-J., Chen, Y., Cao, F., Wei, R.-M., & Song, Y. (2013). Ion-induced diversity in structure and magnetic properties of hexacyanometalate–lanthanide bimetallic assemblies. CrystEngComm, 15(48), 10541–10549. https://doi.org/10.1039/C3CE41704B
Nowicka, B., Korzeniak, T., Stefańczyk, O., Pinkowicz, D., Chorąży, S., Podgajny, R., & Sieklucka, B. (2012). The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coordination Chemistry Reviews, 256(17), 1946–1971. https://doi.org/https://doi.org/10.1016/j.ccr.2012.04.008
Ohkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S., & Tokoro, H. (2011). Light-induced spin-crossover magnet. Nature Chemistry, 3(7), 564–569. https://doi.org/10.1038/nchem.1067
Prins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L., & Tanase, S. (2007). Long-Range Magnetic Ordering in a TbIII–MoV Cyanido-Bridged Quasi-One-Dimensional Complex. Angewandte Chemie International Edition, 46(32), 6081–6084. https://doi.org/10.1002/anie.200701847
Qian, S.-Y., Zhou, H., Yuan, A.-H., & Song, Y. (2011). Syntheses, Structures, and Magnetic Properties of Five Novel Octacyanometallate-Based Lanthanide Complexes with Helical Chains. Crystal Growth & Design, 11(12), 5676–5681. https://doi.org/10.1021/cg201217a
SAINT, V. (2014). 8.34 A. Bruker AXS. Inc., Madison, Wisconsin, USA.
Sato, O., Iyoda, T., Fujishima, A., & Hashimoto, K. (1996). Photoinduced Magnetization of a Cobalt-Iron Cyanide. Science, 272(5262), 704–705. https://doi.org/10.1126/science.272.5262.704
Sheldrick, G M. (2008). No Title. Acta Crystallogr., Sect. A: Found. Crystallogr., 64, 112.
Sheldrick, George M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica. Section C, Structural Chemistry, 71(Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218
Shen, H. (2014). The synthesis, crystal structure and magnetic properties of a one-dimensional terbium(III){--}octa{-}cyanido{-}molybdate(V) assembly. Acta Crystallographica Section C, 70(12), 1169–1173. https://doi.org/10.1107/S2053229614024085
Shi, M. W., Thomas, S. P., Hathwar, V. R., Edwards, A. J., Piltz, R. O., Jayatilaka, D., … Spackman, M. A. (2019). Measurement of Electric Fields Experienced by Urea Guest Molecules in the 18-Crown-6/Urea (1:5) Host–Guest Complex: An Experimental Reference Point for Electric-Field-Assisted Catalysis. Journal of the American Chemical Society, 141(9), 3965–3976. https://doi.org/10.1021/jacs.8b12927
Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32. https://doi.org/10.1039/B818330A
Spackman, M. A., McKinnon, J. J., & Jayatilaka, D. (2008). Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm, 10(4), 377–388. https://doi.org/10.1039/B715227B
Spackman, P. R., Thomas, S. P., & Jayatilaka, D. (2016). High Throughput Profiling of Molecular Shapes in Crystals. Scientific Reports, 6(1), 22204. https://doi.org/10.1038/srep22204
Tanase, S., Evangelisti, M., de Jongh, L. J., Smits, J. M. M., & de Gelder, R. (2008). Crystal structure, magnetic and thermal properties of the one-dimensional complex [Nd(pzam)3(H2O)Mo(CN)8]·H2O. Inorganica Chimica Acta, 361(12), 3548–3554. https://doi.org/https://doi.org/10.1016/j.ica.2008.03.026
Tanase, S., Ferbinteanu, M., & Cimpoesu, F. (2011). Rationalization of the Lanthanide-Ion-Driven Magnetic Properties in a Series of 4f–5d Cyano-Bridged Chains. Inorganic Chemistry, 50(19), 9678–9687. https://doi.org/10.1021/ic201427w
Tanase, S., Mittelmeijer-Hazeleger, M. C., Rothenberg, G., Mathonière, C., Jubera, V., Smits, J. M. M., & de Gelder, R. (2011). A facile building-block synthesis of multifunctional lanthanide MOFs. J. Mater. Chem., 21(39), 15544–15551. https://doi.org/10.1039/C1JM12789F
Tong, Y.-Z., Wang, Q.-L., Su, C.-Y., Ma, Y., Ren, S., Xu, G.-F., … Liao, D.-Z. (2013). Nine cyanide-bridged bimetallic magnetic chains derived from octacyanomolybdate(v) and lanthanide(iii) building blocks. CrystEngComm, 15(46), 9906–9915. https://doi.org/10.1039/C3CE41048J
Turner, M. J., Grabowsky, S., Jayatilaka, D., & Spackman, M. A. (2014). Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals. The Journal of Physical Chemistry Letters, 5(24), 4249–4255. https://doi.org/10.1021/jz502271c
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D., & Spackman, M. A. (2015). Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun., 51(18), 3735–3738. https://doi.org/10.1039/C4CC09074H
Wang, J., Zhang, Z.-C., Wang, H.-S., Kang, L.-C., Zhou, H.-B., Song, Y., & You, X.-Z. (2010). Eicosanuclear Cluster [Cu13W7] of Copper-Octacyanotungstate Bimetallic Assembly: Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 49(7), 3101–3103. https://doi.org/10.1021/ic100282w
Wang, X.-Y., Prosvirin, A. V, & Dunbar, K. R. (2010). A Docosanuclear {Mo8Mn14} Cluster Based on [Mo(CN)7]4−. Angewandte Chemie International Edition, 49(30), 5081–5084. https://doi.org/10.1002/anie.201001664
Wang, Z.-X., Shen, X.-F., Wang, J., Zhang, P., Li, Y.-Z., Nfor, E. N., … You, X.-Z. (2006). A Sodalite-like Framework Based on Octacyanomolybdate and Neodymium with Guest Methanol Molecules and Neodymium Octahydrate Ions. Angewandte Chemie International Edition, 45(20), 3287–3291. https://doi.org/10.1002/anie.200600455
Wang, Z.-X., Zhang, P., Shen, X.-F., Song, Y., You, X.-Z., & Hashimoto, K. (2006). Syntheses, Structures, and Properties of Two Three-Dimensional Octacyanometalate-Based Polymers: Cs2Cu3[W(CN)8]2·4NH3·4H2O and Cu2[Mo(CN)8]·8NH3. Crystal Growth & Design, 6(11), 2457–2462. https://doi.org/10.1021/cg050555b
Woińska, M., Jayatilaka, D., Spackman, M. A., Edwards, A. J., Dominiak, P. M., Woźniak, K., … Grabowsky, S. (2014). Hirshfeld atom refinement for modelling strong hydrogen bonds. Acta Crystallographica Section A, 70(5), 483–498. https://doi.org/10.1107/S2053273314012443
Yadav, R., Trivedi, M., Kociok-Köhn, G., Prasad, R., & Kumar, A. (2015). New Ni(ii) 1{,}2-bis(diphenylphosphino)ethane dithiolates: crystallographic{,} computational and Hirshfeld surface analyses. CrystEngComm, 17(47), 9175–9184. https://doi.org/10.1039/C5CE01526J
Yuan, A.-H., Lu, R.-Q., Zhou, H., Chen, Y.-Y., & Li, Y.-Z. (2010). Three unique two-fold interpenetrated three-dimensional networks with PtS-type topology constructed from [M(CN)4]2− (M = Ni{,} Pd{,} Pt) as “square-planar” building blocks. CrystEngComm, 12(5), 1382–1384. https://doi.org/10.1039/B917262A

Copyright (c) 2020 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.