COFFEE GRAIN ROTARY DRYING OPTIMIZATION

  • W.N. Hernández-Díaz Depto. Ingeniería Química y Bioquímica y Depto. De Posgrado e Investigación del Instituto Tecnológico de Zacatepec
  • F.J. Hernández-Campos Depto. Ingeniería Química y Bioquímica y Depto. De Posgrado e Investigación del Instituto Tecnológico de Zacatepec
  • Z. Vargas-Galarza Depto. Ingeniería Química y Bioquímica y Depto. De Posgrado e Investigación del Instituto Tecnológico de Zacatepec
  • G.C. Rodríguez-Jimenes Unidad de Investigación y Desarrollo en Alimentos del Instituto Tecnológico de Veracruz
  • M.A. García-Alvarado Unidad de Investigación y Desarrollo en Alimentos del Instituto Tecnológico de Veracruz
Keywords: optimization, thermal efficiency, drying, exergy, coffee

Abstract

The objective of the present work was to determine the coffee bean Guardiola dryer operating conditions that minimized the energy consumption (Q) and maximized the process thermal efficiency. A mechanistic coffee bean drying model was solved for a complete mixed assumption to simulate the drying. The simulated results reproduced the experimental results obtained with a 7.60 m3 Guardiola dryer loaded with 2675 kg of wet green coffee grains. The thermal second law efficiency of the drying was calculated with an expression that takes into account the exergy air carries before entering the dryer. For the same coffee load, and with restrictions on grain’s temperature (Tβ < 45°C), final water content (Xβ <11 %) and water activity (aw < 0.80), the drying was simulated for several air fluxes and temperatures to find the optimum drying conditions (Ty = 80°C and Gy=6560 kg air.h-1). A 15.80% reduction in energy consumption was achieved when optimization results were compared with the normal operation conditions.

References

Akpinar, E.K, Midilli, A. and Bicer, Y. (2005). Energy and exergy of potato drying process via cyclone type drier. Energy Conversion and Management 46, 2530-2552.

Akpinar, E.K, Midilli, A. and Bicer, Y. (2006). The first and second law analyses of thermodynamic of pumpkin drying process. Journal of Food Engineering 72, 320-331.

AOAC, (1990). Official Methods of Analysis (Method No. 22.013). Washington, DC: Association of Official Analytical Chemist.

Barrozo, M.A.S., Murata, V.V. and Costa, S.M. (1998). The drying of soybean seed in countercurrent and concurrent moving bed dryers. Drying Technology 16, 2033-2047.

Bruce, D.M. and Giner, S.A. (1993). Mathematical modeling of grain drying in counter-flow beds: Investigation of cross-over of air and grain temperatures. Journal of Agricultural Engineering and Research 55, 143-161.

Bucheli P., Kanchanomai C., Meyer I. and Pittet A. (2000). Development of ochratoxin a during robusta (Coffea canephora) coffee cherry drying. Journal of Food Chemistry 48, 1358- 1362.

Geankoplis C.J. (1982). Procesos de Transporte y Operaciones Unitarias. Compañía Editorial Continental, S.A. de C.V., 3ra Edicion, México, D.F.

Giner S.A., Mascheroni, R.H. and Nellist, M.E. (1996). Cross-flow drying of wheat. A simulation program with a diffusion-based deep-bed model and a kinetic equation for viability loss estimations. Drying Technology 14, 1625-1671.

González-Rentería S.M., Soto-Cruz N.O., Rutiaga-Quiñones O.M., Medrano-Roldán H., Rutiaga-Quiñones J.G. and López-Miranda J. (2011). Optimización del proceso de hidrólisis enzimática de una mezcla de pajas de frijol de cuatro variedades (Pinto villa, Pinto saltillo, Pinto mestizo y Flor de mayo). Revista Mexicana de Ingeniería Química 10, 17-28.

Guerrero S., Alzamora S.M. and Grxchenson L.N. (1996) Optimization of a combined factors technology for preserving banana pure to minimize color changes using the response surface methodology. Journal of Food Engineering 28, 307-322.

Hernández-Díaz W.N., Ruíz-López I.I., Salgado Cervantes M.A., Rodríguez Jiménez G. del C. and García Alvarado M.A. (2008). Modeling heat and mass transfer during drying of green coffee beans using prolate spheroidal geometry. Journal of Food Engineering 86, 1-9.

Kavak E., Midilli A. and Biecer Y. (2005). Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management 46, 2530-2552

Kiranoudis, C.T. (1998). Design of batch grape dryers. Drying Technology 16, 141-162.

Luna-Solano, G., Salgado-Cervantes, M.A., Rodríguez-Jimenes, G.C. and García-Alvarado, M.A. (2005). Optimization of brewer’s yeast (Saccharomyces ssp.) spray drying process. Journal of Food Engineering 68, 9-18.

Madamba, P.S. and Liboon F.A. (2001). Optimization of the vacuum dehydration of celery (Apium graveolens) using the response surface methodology. Drying Technology 19, 611-626.

Madamba, P.S. and Lopez R.I., (2002). Optimization of the osmotic dehydration of mango (Mangifera indica L.) slices. Drying Technology 20, 1227-1242.

Maroulis, Z.B., Kiranoudis, C.T., and MarinosKouris, D. (1995). Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering 26, 113-130.

Paulino de Morales M.E. and Luchese R.H. (2003). Ochratoxin A in green coffee: influence of harvest and drying processing procedures. Journal of Agricultural Food Chemistry 51, 5824-5828.

Pérez-Alegría L.R., Ciro H.J. and Abud L.C. (2001). Physical and thermal properties of parchment coffee bean. American Society of Agricultural Engineers 44,1721-1726.

Prommas R.,Keangin P. and Rattanadecho P. (2010). Energy and exergy analyses in convective drying process of multi-layered porous packed bed. International Communications in heat and mass Transfer 37, 1106-1114.

Ramírez, A., Tejero-Andrade, J.M., Salgado-Cervantes, M.A., Rodríguez-Jimenes, G.C. and García-Alvarado, M.A. (2008). Second law thermal efficiency of convective driers. Proceedings of the 16th International drying Symposium. Hyderabd India. Paper No. 262.

Ratti, C. and Mujumdar, A.S. (1995). Simulation of packed bed drying of foodstuffs with airflow reversal. Journal of Food Engineering 26, 259- 271.

Sin, H. N., Yusof, S., Hamid, N. and Rahman, R. A. (2006). Optimization of enzymatic clarification of sapodilla juice using response surface methodology. Journal of Food Engineering 73, 313-319.

Sfredo M.A., Finzer J.R.D. and Limaverde J.R. (2002).Study of the drying process of Arabica coffee cherries using vibrated trays driers in the fine drink attainment. Proceedings of the 13th international drying Symposium (IDS 2002), Beijing China. B, 1342-1351.

Sfredo M.A., Finzer J.R.D. and Limaverde J.R. (2005). Heat and mass transfer in coffee fruits drying. Journal of Food Engineering 70, 15-25.

Spencer, H.B. (1969). A mathematical simulation of grain drying. Journal of Agricultural Engineering Research 14, 226-235.

Suarez-Quiroz M., González-Rios, Barel M., Guyot B., Schorr-Galindo S. and Guiraud J. P. (2004). Effect of chemical and environmental factors on Aspergillus ochraceus growth and toxigenesis in green coffee. Food Microbiology 21, 629-634.

Téllez-Mora P., Peraza-Luna F.A., Feria-Velasco A. and Andrade-González I. (2012). Optimización del proceso de fermentación para la producción de tequila, utilizando la metodología de superficie de respuesta (MSR). Revista Mexicana de Ingeniería Química 11, 163-176.

Torrez, N. Gustafsson, M., Schreil, A. and Martinez, J. (1998). Modeling and simulation of cross-flow moving bed grain dryers. Drying Technology. 16, 1999-2015.

Varadharaju N., Karunanidhi C. and Kailappan R. (2001). Coffee cherry drying: a two layer model. Drying Technology 19, 709-715.

Villalpando-Guzmán J., Herrera-López E.J., Amaya- Delgado L., Godoy-Zaragoza M.A., Mateos-Díaz J.C., Rodríguez-González J. and Jaubert-Garibay S. (2011). Efecto del secado complementario con microondas sobre tres formas de rebanadas de mango. Revista Mexicana de Ingeniería Química 10, 281-290.

Wang, Z.H. and Chen, G. (2000). Heat and mass transfer in batch fluidized-bed drying of porous particles. Chemical Engineering Science 55, 1857-1869.

Zvolinschi, A., Johannessen, E. and Kjelstrup, S. (2006). The second-law optimal operation of a paper drying machine. Chemical Engineering Science 61, 3653-3662.
Published
2020-03-19
How to Cite
Hernández-Díaz, W., Hernández-Campos, F., Vargas-Galarza, Z., Rodríguez-Jimenes, G., & García-Alvarado, M. (2020). COFFEE GRAIN ROTARY DRYING OPTIMIZATION. Revista Mexicana De Ingeniería Química, 12(2), 315-325. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1475
Section
Process engineering