BIOMATERIALS BASED IN FERMANAL STEEL, AN OPTION TO THE SURGICAL IMPLANTS MANUFACTURING

  • W. Aperador Departamento de Ingeniería, Universidad Militar Nueva Granada
  • S. Lizarazo Facultad de Ingeniería, Universidad Pedagógica y Tecnológica de Colombia
  • A. Mejía Facultad de Ciencias, Escuela Colombiana de Ingeniería Julio Garavito

Abstract

We evaluate the potential use of Fermanal alloy (Fe-Al-Mn) in the manufacture of surgical implants. For this, the steel of that system is subjected to heat treatment in order to find the suitable corrosion resistance. The electrochemical behavior was evaluated by electrochemical impedance spectroscopy techniques and potentiodynamic polarization curves using Hanks balanced salt solution as electrolyte. Microstructural characterization was performed through scanning electron microscopy (SEM) and the corrosion products were evaluated by X-ray diffraction (XRD). It was found that the heat treatment improves the electrochemical properties of the steel FeAl-Mn, whence this alloy is presented as an alternative to the currently alloys used in the field of biomaterials, such as stainless steel type AISI 316LVM. Keywords: biomaterials, FeMnAl, corrosion, heat treatment.

References

Aperador W., Vargas A., Betancur J. (2012). Evaluation of passivation of the austenitic FeMnAl alloy. Revista Latinoamericana de Metalurgia y Materiales 32, 236-243.

Aperador W., Bautista Ruíz J. H., Pardo Cuervo O. (2012). Comportamiento electroquímico de las películas delgadas de CrN/Cr obtenidas variando el potencial BIAS. Revista Mexicana de Ingeniería Química 11, 145-154.

Białon J., Dudek D., Kobylanska-Szkaradek K., Zastawny A. (1983). The influence of nuclear radiation on some physical properties of fermanalsteel. Materials Science and Engineering 59, 217-222.

Bonfield W. (1981). Mechanical properties of bone. Biomaterials 2, 251-252.

Bordji K., Jouzeau J.Y., Mainard D., Payan E., Netter P., Rie K.T., Stucky T., Hage-Ali M. (1996). Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 17, 929-940.

Bou-Saleh Z., Shahryari A., Omanovic S. (2007). Enhancement of corrosion resistance of a biomedical grade 316LVM stainless steel by potentiodynamic cyclic polarization. Thin Solid Films 515, 4727-4737.

Brune D., Hultquist G. (1985). Corrosion of a stainless steel with low nickel content under static conditions. Biomaterials 6, 265-268.

Cook S.D., Tomas K.A., Harding A.F., Collings A. (1986). The in vivo performance of 250 internal fixation devices; a fellow up study. Biomaterials 8, 177-184.

Geetha M., Singh A.K., Asokamani R., Gogia A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science 54, 397-425.

Langer R., Cima L. G., Tamada J. A., Wintermantel E. (1990). Future directions in biomaterials. Biomaterials 11, 738-745.


Lins V. F., Freitas M. A., Paula e Silva E. M. (2005). Corrosion resistance study of Fe-MnAl-C alloys using immersion and potentiostatic tests. Applied Surface Science 250, 124-134.

Pérez-Alcázar G.A. (2004). Propiedades estructurales y magnéticas de aceros Fe-Mn- Al, ”fermanal”. Revista de la Academia Colombiana de Ciencias 28, 265-274.

Pourbaix M. (1984). Electrochemical corrosion of metallic biomaterials. Biomaterials 5, 122-134.

Sabine B., Fung Ang S., Schneider G. A. (2010). On the mechanical properties of hierarchically structured biological materials. Biomaterials 31, 6378-6385.

Samuel S., Nag S., Scharf T. W., Banerjee R. (2008). Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants. Materials Science and Engineering: C 28, 414-420.

Shahryari A., Omanovic S., Szpunar J. A. (2008). Electrochemical formation of highly pitting resistant passive films on a biomedical grade 316LVM stainless steel surface. Materials Science and Engineering: C 28, 94-106.

Shih-Hang C., Bor-Yann C., Yung-Chih L.. (2012). Toxicity assessment of three-component Fe-CrNi biomedical materials using an augmented simplex design. Materials Science and Engineering: C 32, 1893-1896.

Tapash R., Rautray R., Kyo-Han K. (2011). Ion implantation of titanium based biomaterials. Progress in Materials Science 56, 1137-1177.

Tjong S.C. (1990). Electron microscope observations of phase decompositions in an austenitic Fe-8.7Al-29.7Mn-1.04C alloy. Materials Characterization 24, 275-292.

Wang C.J., Chang Y.C. (2005). NaCl-induced hot corrosion of Fe-Mn-Al-C alloys. Materials Chemistry and Physics 76, 151-161.

Zhang Y.S., Lu X., Tian X., Qin Z.(2002). Compositional dependence of the transition, structural stability, magnetic properties and electrical resistivity in Fe-Mn-Al-Cr-Si alloys. Materials Science and Engineering 334, 19-27.
Published
2020-03-19
How to Cite
Aperador, W., Lizarazo, S., & Mejía, A. (2020). BIOMATERIALS BASED IN FERMANAL STEEL, AN OPTION TO THE SURGICAL IMPLANTS MANUFACTURING. Revista Mexicana De Ingeniería Química, 12(2), 337-344. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1477