DESIGN OF AN INTERSTITIAL STRUCTURE FOR A GRAPE SEED OIL EMULSION BY DESIGN OF EXPERIMENTS AND SURFACE RESPONSE

  • M.C. Chaparro-Mercado Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • F. García-Ochoa Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • H. Hernandez-Sánchez Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • L. Alamilla-Beltrán Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • M.X. Quintanilla-Carvajal Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • M. v Universidad Iberoamericana
  • R. Pedroza-Islas Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • G.F. Gutierrez-López Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
Keywords: design of experiments, response surface, interstitial structure, grape seed oil, mini (nano)-emulsion

Abstract

An interstitial structure was designed to prepare a mini (nano) - emulsion of grape seed oil; the interface was composed of surface active molecules (biopolymers and surfactants) to produce the mini (nano) - emulsion by interfacial deposition of oil by displacement of acetone from the dispersed phase. Design of Experiments of mixes and Respond Surface was used to determine the best formulations for the system: F1, Surfactants: Tween 20, T, (0.68%), Dimodan, D, (0.317%) and Panodan, P, (0.0013%) and F2, Polymers system: Gum Arabic, GA, (0.029%), Maltodextrin, MD, (0.115%) and whey protein concentrate,WPC, (0.187%). The proposed formulation was prepared considering the lowest value of surface tension for surfactants and the highest value for the polymers system. A leptokurtic size distribution was obtained for the interstitial structure, prepared with a stirring rate of 10000 rpm and resulting in an average diameter of 0.185 µm and a Z -potential of -18.23 mV. The emulsion was prepared using this structure and resulting average size and Z-potential values were 0.188 µm and -18.55 mV respectively. These results were not significantly different from those of the interstitial structure and therefore, it was concluded that the final composition of the emulsion and preparation procedure were adequate.

References

Acedo-Carrillo, J.I., Rosas-Durazo, A., Herrera-Urbina R., Rinaudo M., Goyccolea F.M. and Valdez M.A. (2006). Zeta potential and drop growth of oil in water emulsions stabilized with mesquite gum. Carbohydrate Polymers 65, 327- 336.

Acosta, E. (2009). Biovailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid and Interface Science 14, 3- 15.

Álvarez del Castillo, A., Santoyo, E. García-Valladares, O. and Sánchez-Upton, P. (2010). Statistical evaluation of void fraction correlations for the numerical modeling of two-phase flow in geothermal wells. Revista Mexicana de Ingeniería Química 9 (3), 285- 311.

Ambrosone, L., Mosca, M. and Ceglie, A. (2007). Impact of edible surfactants on the oxidation of olive oil in water-in-oil emulsions. Food Hydrocolloids 21,1163-1171.

Brückner, M., Bade, M. and Kuns, B. (2007). Investigations into the stabilization of a colatile aroma compound using a combined emulsification and spray drying process. Europe Food Research Technology 226, 137-146.

Flanagan, J. and Singh, H. (2006). Microemulsions: a potential delivery system for bioactives in food. Critical Reviews in Food Science and Nutrition 46, 221-237.

Flanagan, J., Kortegaard, K., Pinder, D. N., Rades, T. and Singh, H. (2006). Solubilisation of soybean oil in microemulsions using food-grade surfactants. Food Hydrocolloid 20, 253-260.

Forgiarini, A., Esquena, J., Gonzalez, C. and Solans, ´ C. (2001). Formation of nano- emulsions by low energy emulsification methods at constant temperature. Langmuir 17, 2076-2083.

Gaonkar, A.G. and Bagwe, R.P, (2003). Microemulsions in Foods: Challenges and Applications. Surfactant Science Series 109, 407-430.

Grima, P.G., Almagro, Ll. M. and Tort-Martorell Ll. X. (2004). In: Estadística Práctica con MINITAB, Pp. 209-241. Pearson Education, España.

Gunning, P.A., Mackie, A.R., Gunning A.P., Woodward N.C. Wilde, P.J. and Morris, V.J. (2004). Effect of surfactant type on surfactantprotein interactions at the air-water interface. Biomacromolecules 5, 984-991.

Hoog, E.H.A. de and Lekkerkerker, H.N.W. (2001). Breakup of an elongated droplet in a centrifugal field. Journal of Physics and Chemistry 105, 11636 -11640.

Jafari, S.M., He, Y. and Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering 82, 478-488.

Jafari, S.M., Assadpoor, E., Bhandari, B. and He, Y. (2008), Recoalescence of emulsion droplets during high-energy emulsification. Journal of Food Hydrocolloid 22, 1191-1202.

Joshi, SS; Kuszynski C. A., Bagchi D. (2001). The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract. Current Pharmaceutical Biotechnology 2, 187-200.

Klaypradit, W. and Huang, Y-W. (2008). Fish oil encapsulation with chitosan using altrasonic atomizer. LWT-Food Science and Technology 41,1133-1139.

Lamaallam, S., Bataller, C., Dicharry, J. and Lachaise, J. (2005). Colloids Surface Analysis. Physicochemical Engieneer Aspects 270-272, 44-51.

Mackie, A.R., Gunning, A.P., Wilde, P.J. and Morris, V.J. 2000. Orogenic displacement of protein from the oil water interface. Langmuir 16, 2243-2247.

Matsuno, R. and Adachi, S. (1993). Lipid encapsulation technology-Techniques and applications to foods. Trends in Food Science and Technology 4, 256-261.

McClements, D. J. (2005). Food emulsions: principles, practice, and techniques. CRC Press.

McNamee, B.F., O’Riordan, E.D. and O’Sullivan, M. (2001). Effect of partial replacement of gum Arabic with carbogydrates on its microencapsulation properties. Journal of Agricultural and Food Chemistry 48, 3385- 3388.

Moinard-Chécot, D., Chevalier, Y., Briancon S.,Beney, L. and Fessi, H. (2007). Mechanism of nanocapsules formation by the emulsion process. Journal of Colloid and Interface Science 317, 458-468.

Petkov, J.T., Gurkov, T.D., Campbell, B.E. and Borwankar, R.P. (2000). Dilatational and shear elasticity of gel-like protein layers on air water interface. Langmuir 16, 3703-3711.

Prins, A. (1999). Stagnant surface behavior and its effect on foam and film stability. Colloids Surf A - Physicochemical Engineering Aspects 149, 467-473.

Quintanilla-Carvajal, M.X., Meraz-Torres, L.S., Alamilla-Beltran, L., Chanona-Pérez, J.J. Terres-Rojas, E., Hernandez-Sánchez, H., Jiménez-Aparicio, A.R. and Gutiérrez-López G.F. (2011). Morphometric characterization of spray-dried microcapsules before and after α-tocopherol extraction. Revista Mexicana de Ingeniería Química 9, 301-312.

Ribeiro H.S., Chu B.S., Ichikawa S. and Nakajima M. (2008). Preparation of nanodispersions containing β-carotene by solvent displacement method. Food Hydrocolloids 2, 12-17.

Ríos-Morales, D., Castillo-Araiza, C.O., Ruiz-Martínez, R.S. and Vizcarra-Mendoza, M.G. (2011). Statistical evaluation and modeling of the behavior of a fluidized bed granulator. Revista Mexicana de Ingenier´ıa Qu´ımica 10, 235-245.

Schneider, A. and Wolf, B.A. (2000). Specific features of the interfacial tension in the case of phase separated solutions of random copolymers. Polymer 41, 4089-4097.

Tolstoguzov, V. (2003). Some thermodynamic considerations in food formulation. Food Hydrocolloids 17, 1-23.

Wang, L., Dong. J., Chen, J., Eastoe, J. and Li, X. (2009). Desig and optimization of a new selfnanoemulsifying drug delivery system. Journal of Colloid and Interface Science 330, 443-448.

Wilde, P.J. (2000). Interfaces: their role in foam and emulsion behavior. Current Opinion in Colloid and Interface Science 5, 176-181.

Windharb, E.J., Dressler, M., Feigl, K., Fischer, P. and Megias-Alguacil, D. (2005). Emulsion processing - from single-drop deformation to design of complex processes and products. Chemical Engineering Science 60, 2101-2113.

Yilmaz, Y and Toledo, RT (2006). Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. Journal of Food Composition and Analysis 19, 41-48.
Published
2020-03-23
How to Cite
Chaparro-Mercado, M., García-Ochoa, F., Hernandez-Sánchez, H., Alamilla-Beltrán, L., Quintanilla-Carvajal, M., v, M., Pedroza-Islas, R., & Gutierrez-López, G. (2020). DESIGN OF AN INTERSTITIAL STRUCTURE FOR A GRAPE SEED OIL EMULSION BY DESIGN OF EXPERIMENTS AND SURFACE RESPONSE. Revista Mexicana De Ingeniería Química, 11(1), 11-21. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1489
Section
Food Engineering

Most read articles by the same author(s)