DETECTION OF Lactobacillus plantarum 299V USING MICROCANTILEVER-BASED BIOSENSOR WITH DYNAMIC FORCE MICROSCOPY

  • A.G. Mendoza-Madrigal Instituto Politécnico Nacional
  • J.J. Chanona-Pérez
  • J.V. Méndez-Méndez
  • E. Palacios-González
  • G. Calderón-Domínguez
  • H. Hernández-Sánchez
Keywords: biosensors, cantilever, atomic force microscopy, foods

Abstract

The aim of this study was the detection of active L. plantarum 299v (probiotic microorganism) growth using microcantilever based biosensors in air and in dynamic mode by atomic force microscopy. Commercial cantilevers were cleaned with Piranha solution in order to eliminate contaminants and were functionalized with silylating solution; afterwards the cantilevers were coated by an agarose layer using the capillaries technique. An atomic force microscope in tapping mode was required to evaluate the resonance frequency shift of commercial cantilevers inoculated with L. plantarum 299v. Humidity and temperature were controlled inside an atmospheric hood during the biodetection. The resonance frequency curves were seen to be narrower with higher Q factor values ( ~219). The results showed that the resonance frequency shifted by approximately 5.2 ±0.8 kHz on the inoculated cantilevers throughout the growth kinetics. From the resonance frequency curves and known mechanical properties of the cantilevers, the biosensor sensitivity was determined to be 383 ± 3 pg/Hz and the biosensor can detect ~400 bacteria. In addition, L. plantarum growth on the cantilever’s surface was confirmed by scanning electron microscopy. The results showed that it is possible to construct a microbiosensor by using commercial cantilevers and atomic force microscopy. These sensors can
be used as a platform for the detection of microorganisms associated with functional foods.

References

Baer, D. R. and Engelhard, M. H. (2010) XPS analysis of nanostructured materials and biological surfaces. Journal of Electron Spectroscopy and Related Phenomena 178-179, 415-432.

Berquand, A., Xia, N., Castner, D., Clare, B., Abbott, N., Dupres, V., Adriaensen, V. and Dufrene Y. (2005). Antigen Binding Forces of Single Antilysozyme Fv Fragments Explored by Atomic Force Microscopy. Langmuir 21, 5517- 5523.

Buchanan, R. L., Whiting, E. C., Damert, W. C. (1997). When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiology 14, 313-326.

Brundle, C. R., Conti G., and Mack, P. (2010). XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films. Journal of Electron Spectroscopy and Related Phenomena 178-179, 433-448.

Campbell G. A. and Mutharasan, R. (2005). Escherichia coli O157:H7 detection limit of millimetersized PZT cantilever sensors is 700 Cells/mL. Analytical Sciences 21, 355-357.

Charalampopoulos, D., Vázquez, J. A. and Pendiella, S. S. (2009). Modelling and validation of Lactobacillus plantarum fermentations in cereal-based media with different sugar concentrations and buffering capacities. Biochemical Engineering Journal 44, 95-105.

Chen G. Y., Thundat, T., Wachter, E. A. and Warmack, R. J. (1995). Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. Journal of Applied Physics 77, 3618-3622.

Chuqiao, T., Xuchu, M. House, A.,. Kauzlarich M. S. and Louie, A. Y. (2011). PET Imaging and Biodistribution of Silicon Quantum Dots in Mice. ACS Medicinal Chemistry Letters 2, 285- 288. dx.doi.org/10.1021/ml1002844

Dhanani, A. S., Gaudana, S. B. and T. Bagchi. (2011). The ability of Lactobacillus adhesion EF-Tu to interfere with pathogen adhesion. European Food Research and Technology 232, 777-785.

Gfeller, K. Y., Nugaeva, N., Herner, M. (2005). Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosensors and Bioelectronics 21, 528- 533.

Giessibl, F J (2003). Advances in atomic force microscopy. Reviews of Modern Physics 75, 949-983.

Gunter, R. L., Delinger, W. G., Manygoats, K., Kooser A., and Porter, T. L. (2003). Viral detection using an embedded piezoresistive microcantilever sensor. Sensors and Actuator 107, 219-224.

Gurker, N., Ebel, M. F. and Ebel, H. (1983), Imaging XPS-A new technique, I-principles. Surface and Interface Analysis 5, 13-19. doi: 10.1002/sia.740050105

Huang, L. (2008). Growth Kinetics of Listeria monocytogenes in Broth and Beef Frankfurters- Determination of Lag Phase Duration and Exponential Growth Rate under Isothermal Conditions. JFS E: Food Engineering and Physical Properties 7, 235-242.

Ilic, B. Craighead, H.G., Krylov, S., Senaratne, W. Ober, C., Neuzil, P. (2005). Attogram detection using nano electromechanical oscillators. Journal of Applied Physics 95, 3694-3703.

Johnson, B. N., Mutharasan, R. (2012). Biosensing using dynamic-mode cantilever sensors: A review. Biosensors and Bioelectronics 32, 1-18.

Lang, H. P., Hegner, M., Meyer, E., Gerber, C. (2002). Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13, R29-R36.

Laparra, J. M and Sanz, Y. (2009). Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Letters in Applied Microbiology 49, 695-701.

Lazcka, O., Del Campo, F. J., Mu˜n´oz, F. X. (2007). Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22, 1205-1217.

Lübbe, J., Tröger, L., Torbrügge, S., Bechstein, R., Richter, C. K¨uhnle, A. and Reichling, M. (2010) Achieving high effective Q-factors in ultra-high vacuum dynamic force microscopy. Measurement Science and Technology 21, 1-9.

Minary-Jolandan, M., Tajik, A.,Wang N. and Yu, MF (2012). Intrinsically high-Q dynamic AFM imaging in liquid with a significantly extended needle tip. Nanotechnology 23, 235704.

Nugaeva, N., Gfeller, K. Y., Backmann, N., Lang, H. P., D¨uggelin, M., Hegner, M. (2005). Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosensors and Bioelectronics 21, 849-856.

Raiteri, R., Grattarola, M., Butt, H. J., Skl´adal, P. (2001). Micromechanical cantilever-based biosensor. Sensors and Actuators B, 79, 115- 126.

Ricciardi, C., Canavese, G., Castagna, R., Digregorio, G., Ferrante, V., Marasso, S. Ricci, A., Alessandria V., Rantsiou, K., Cocolin. L. (2010). Online Portable Microcantilever Biosensors for Salmonella enterica Serotype Enteritidis Detection. Food Bioprocess Technology 3, 956-960.

Savran, C. A., Knudsen, S. M., Ellington, A. D. and Manalis, S. R. (2004). Micromechanical detection of proteins using aptamer-based receptor molecules. Analytical Chemistry 76, 3194-3198.

Seo, Y. and Jhe,W. (2008). Atomic force microscopy and spectroscopy. Reports on Progress in Physics 71,016101 (23pp). doi:10.1088/0034-4885/71/1/016101

Shu, W., Laue E. D., and Seshia, A. A. (2007). Investigation of biotin-streptavidin binding interactions using microcantilever sensors. Biosensors and Bioelectronics 22, 2003-2009. Su, L., Jia, W., Hou, C., Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics 26, 1788-1799.

Sungkanak, U., Sappat, A., Wisitsoraat, A., Promptmas, C., Tuantranon, A. (2010). Ultrasensitive detection of Vibrio cholerae O1 using microcantilever-based biosensor with dynamic force microscopy. Biosensors and Bioelectronics 26, 784-789.

Thévenot, D. R., Toth, K. Durst, R. A., Wilson, G. S. (2001). Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics 34, 636-659.

Van Dorst, B., Mehta, J., Bekaert, K., Rouah-Martin, E. De Coen,W., Dubruel, P., Blust, R., Robbens, J. (2010). Recent advances in recognition elements of food and environmental biosensors: A review. Biosensors and Bioelectronics 26, 1178-1194.

Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. (2010). An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances 28, 232- 254.

Vo-Dinh, T., Cullum, B. M., Stokes, D. L. (2001). Nanosensors and biochips: frontiers in biomolecular diagnostics. Sensors and Actuators 74, 2-11.

Waggoner, P. and Craighead, H. (2007). Microand nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7, 1238-1255.

Yen, Y. K., Huang, C. Y., Chen, C. H., Hung, C. M., Wu, K. C., Lee,C. K., Chang,J. S., Lin, S. and Huang, L. S. (2009). A novel, electrically protein-manipulated microcantilever biosensor for enhancement of capture antibody immobilization. Sensors and Actuators B: Chemical 141, 498-505.

Zago, M., Fornasari, M. E., Carminati, D., Burns, P., Su`arez, V., Vinderola, G., Reinheimer, J. and Giraa, G. (2011). Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiology 28, 1033-1040.

Zhe, J., Jian-Feng, M. , Zhi-Heng, Z., Feng X., Run-Cang, S. (2013). Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Industrial Crops and Products 47, 212-217.

Zhu, Q. Shih, W. Y., Shih, W-H. (2007). in situ, in-liquid, all-electrical detection of Salmonella typhimurium using lead titanate zirconate/goldcoated glass cantilever at any dipping depth. Biosensors and Bioelectronics 22, 3132-3138.
Published
2020-03-23
How to Cite
Mendoza-Madrigal, A., Chanona-Pérez, J., Méndez-Méndez, J., Palacios-González, E., Calderón-Domínguez, G., & Hernández-Sánchez, H. (2020). DETECTION OF Lactobacillus plantarum 299V USING MICROCANTILEVER-BASED BIOSENSOR WITH DYNAMIC FORCE MICROSCOPY. Revista Mexicana De Ingeniería Química, 12(3), 379-389. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1490
Section
Food Engineering

Most read articles by the same author(s)

<< < 1 2 3 4