• E. Flores-Andrade
  • L.A. Pascual-Pineda Unidad de Servicios de Apoyo de Resolución Analítica (SARA), Universidad Veracruzana
  • M. Jiménez
  • C.I. Beristain
Keywords: mixtures, mass transfer, water activity, whey protein


The mass transfer of sliced apple in aqueous mixtures of sucrose-whey protein concentrate (WPC) at 40 °C was studied. WPC:sucrose mixtures in different ratios and immersion times of up to 400 minutes were prepared. Water activity (aw) was determined and osmotic pressure in aqueous solutions was calculated. The experimental data of mass loss (ML ), water loss (WL) and solid gain (SG) of apple slices were determined. The apparent diffusion coeffcients of water (Dw) were calculated. The results showed that the aw of the mixtures ranged from 0.947 to 0.998; whereas the average diffusion coeffcients of water (Dw) varied from 1.16 to 2.32x10-10 m2/s. It was observed that the lesser the quantity of sucrose and the bigger the WPC, mass loss in the equilibrium (ML∞), water loss in the equilibrium (WL∞) and Dw parameters decreased. When used 2:3 and 3:2 proteinsucrose solutions there was a flux resistance to mass, because it is likely to be formed a liquid membrane of biopolymer around the apple


Archibald, A. (2002). La proteína concentrada del suero de leche una super estrella en la nutrición. U. S. Diary Export Council. United States of America.

Azuara, E., Beristain, C. I. y Gutiérrez, G. F. (2002). Osmotic dehydration of apples by immersion in concentrated sucrose/maltodextrin solutions. Journal of Food Processing Preservation 26, 295-306.

Azuara, E., Cortes, R., Garcia, H. S. y Beristain, C. I. (1992). Kinetic model for osmotic dehydration and its relationship with Fick’s second law. International Journal of Food Science and Technology 27, 409-418.

Bekele, Y. y Ramaswamy, H. (2010). Going beyond conventional osmotic dehydration for quality advantage and energy savings. EJAST, 1, 1-15.

Bellary, A. N., Sowbhagya, H. B., y Rastogi N. K. (2011). Osmotic dehydration assisted impregnation of curcuminoids in coconut slice. Journal of Food Engineering 105, 453-459.

Beristain, C. I., Azuara, E., Cortés, R. y García, H. S. (1990). Mass transfer during osmotic dehydration of pineapple rings. International Journal of Food Science and Technology 25, 576-582.

Camirand, W., Krochta, J. M., Pavlath, A. E., Wong, D. y Cole, M. E. (1992). Properties of some edible carbohydrate polymer coatings for potential use in osmotic dehydration. Carbohydrate Polymers 17, 39- 49.

Dangaran, K., Tomasula, P. M. y Qi P. (2009). Structure and function of protein-based edible films and coatings. En: Edible Films and Coatings for Food Applications, (M. E. Embuscado y K. C. Huber, eds.), Pp. 25-56. Springer, New York.

De Wit, J. N. (1998). Nutritional and functional characteristics of whey proteins in food products. Journal of Dairy Science 81, 597-608.

Dermesonlouoglou, E. K., Pourgouri, S. y Taoukis, P. S. (2008). Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber. Innovative Food Science and Emerging Technologies 9, 542-549.

El-Aouar, A. A., Azoubel, P. M., Barbosa, J. L. y XidiehMurr, F. E. (2006). Influence of the osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering 75, 267- 274.

Flores-Andrade, E., Tapia-Santiago, M., Rangel-Sánchez, K. E., Ortiz-Sánchez, C. A., González-Arnao, M. T. y Beristain, C. I. (2012). Evaluación cinética de la impregnación de sólidos en placas de manzana utilizando una solución de proteína de suero de leche. En: Proceedings of the XXXIII National Meeting and II International Congress AMIDIQ, San Jose del Cabo, BCS, México.

Ganjloo, A., Rahman, R. A., Bakar, J., Osman, A. y Bimakr, M. (2011). Kinetics modeling of mass transfer using Peleg's equation during osmotic dehydration of seedless guava (Psidium guajava L.): effect of process parameters. Food and Bioprocess Technology 5, 2151-2159.

García, M. A., Pinotti, A., Martino, M. N. y Zaritzky, N. E. (2009). Characterization of Starch and Composite Edible Films and Coatings. En: Edible Films and Coatings for Food Applications, (M. E. Embuscado y K. C. Huber, eds.), Pp. 169-210. Springer, New York.

Ispir, A. y To˘grul, I. T. (2009). Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chemical Engineering Research and Design 87, 166- 180.

Jalaee, F., Fazeli, A., Fatemian, H., y Tavakolipour, H. (2011). Mass transfer coeffcient and characteristics of coated apples in osmotic dehydrating. Journal of Food Engineering 78, 1355-1360.

Khoyi, M. R. y Hesari, J. (2007). Osmotic dehydratation kinetics of apricort using sucrose solution. Journal of Food Engineering 78, 1355-1360.

Lazarides, H. N., Gekas, V. y Mavroudis, N. (1997). Apparent mass diffusivities in fruit and vegetable tissues undergoing osmotic processing. Journal of Food Engineering 31, 315-324.

Lazarides, H.N., Katsanidis, E. y Nickolaidis, A. (1997). Mass transfer kinetics during osmotic preconcentration aiming at minimal solid uptake. Journal of Food Engineering 25, 151-166.

Lenart, A. y Flink, J. M. (1984). Osmotic dehydration of potato. II. Spatial distribution of the osmotic agent. Journal of Food Technology 19, 65-89.

Lewicki, P. P. y Lenart, A. (1995). Osmotic dehydration of fruits and vegetables. En: Handbook of Industrial Drying (A.S. Mujumdar, ed.), Pp. 691-713. Marcel Dekker, New York. 399-405.

Lewicki, P. P. (2009). Data and Models of Water Activity I: Solutions and Liquid Foods. En: Food Properties Handbook, (M.S. Rahman ed.), Pp. 33-67. Taylor & Francis Group, Nueva York.

Marceliano, B. N. (2009). Structure and function of polysaccharide gum-based edible films and coatings. En: Edible Films and Coatings for Food Applications, (M. E. Embuscado y K. C. Huber, eds.), Pp. 169-210. Springer, New York.

Matusek, A., Czukor, B. y Merész, P. (2008). Comparison of sucrose and fructo-oligosaccharides as osmotic agents in apple. Innovative Food Science and Emerging Technologies 9, 365-373.

Mavroudis, N. E., Gidley, M. J. y Sjöholm, I. (2012). Osmotic processing: effects of osmotic medium composition on the kinetics and texture of apple tissue. Food Research International 48, 839-847.

Mújica-Paz, H., Valdez-Fragoso, A., López-Malo, A., Palou, E. y Welti-Chanes, J. (2003). Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. Journal of Food Engineering 57, 305-314.

Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal 19, 7-18.

Qi, H., Le Maguer, M. y Sharma, S.K. (1998). Design and selection of processing conditions of a pilot scale contactor for continuous osmotic dehydration of carrots. Journal of Food Processing and Engineering 21, 75-88.

Rahman, M. S. (1995). Food Properties Handbook. 2da ed. Editorial CRC Press, New York, USA.

Saurel, R., Raoult-Wack, A. L., Ríos, G. y Guilbert S. (1994). Mass transfer phenomena during osmotic dehydration of apple I. Fresh plant tissue. International Journal of Food Science Technology 29, 531-542.

Silva, K. S., Fernandes, M. A. y Mauro, M.A. (2013). Osmotic dehydration of pineapple with impregnation of sucrose, calcium, and ascorbic acid. Food Bioprocess Technology, DOI 10.1007/s11947-013- 1049-0.

Singh, B., Panesar, P. S., Nandas, V. y Kennedy J. F. (2010). Optimisation of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. Food Chemistry 123, 590-600.

Yadav, A. K. y Singh, S. V. (2012). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science Technology, DOI 10.1007/s13197-012-0659- 2.
How to Cite
Flores-Andrade, E., Pascual-Pineda, L., Jiménez, M., & Beristain, C. (2020). EFFECT OF WHEY PROTEIN-SUCROSE IN THE OSMOTIC DEHYDRATION OF APPLE. Revista Mexicana De Ingeniería Química, 12(3), 415-424. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1501
Food Engineering

Most read articles by the same author(s)