• M.A. Martínez-Trujillo Tecnológico de Estudios Superiores de Ecatepec, Laboratorio de Catálisis Enzimática, División de Ciencias Químicas y Bioquímicas
  • M. García-Rivero Tecnológico de Estudios Superiores de Ecatepec, Laboratorio de Catálisis Enzimática, División de Ciencias Químicas y Bioquímicas
Keywords: organic contaminants, soils, supports, degradation, bacteria, fungi


The use of immobilized cells in the environmental field has been slight explored despite recognizing its potential in contaminant biodegradation due to increased tolerance to toxic compounds and the stability of the cells. The biodegradation assays of organic contaminants have been carried out mainly in liquid medium and there are few assays in soil, therefore the interest of this work focuses on reviewing the state of the art of using immobilized cells for degradation of organic pollutants in soils. Some advantages of support used in the immobilization of microorganisms for environmental purposes as well as the different approaches that have worked to identify potential areas of opportunity are also discussed.


Ahamad, P.Y.A. y Kunhi, A.A.M. (2011). Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation 22, 253-265.

Álvarez, G.S., Foglia, M.L., Copello, G.J., Desimone, MF. y Diaz, LE. (2009). Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices. Applied Microbiology and Biotechnology 82, 639-646.

Annadurai, G., Rajesh B.S., Mahesh, K.P.O. y Murugesan, T. 2000. Adsorption and biodegradation of phenol by chitosan-immobilized Pseudomonas putida (NICM 2174). Bioprocess and Biosystems Engineering 22, 493-501.

Anselmo, A.M., Mateus, M. y Cabral, J.M.S. 1985. Degradation of phenol by immobilized cells of Fusarium flocciferum. Biotechnology Letters 7, 889-894.

Bahrami, S., Bassi, A. y Yanful, E. (2007). Investigation of sol-gel matrices containing crude metallothionein from Scchizosaccharomyces pombe for water treatment applications. The Journal of Sol-Gel Science and Technology 42,119-126.

Balfanz, J. y Rehm, H.J. (1991). Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp A 7-2 in soil. Applied Microbiology and Biotechnology 35, 662-668.

Bandhyopadhyay, K., Das, D., Bhattacharyya, P. y Maiti, B.R. (2001). Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate. Biochemical Engineering Journal 8, 179-186.

Barbeau, L. Deschenes, D. Karamanev, Y. ˆ Comeau y Samson, R. 1997. Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil. Applied Microbiology and Biotechnology 48, 745-752.

Baumgarten W. F., Frommer, T. Mann, I. Pascik, H. Rast, y Schapel, D. January 1987 U.S. patent no. 4,634,672.

Bettmann, H. y Rehm, H.J. (1984). Degradation of phenol by polymer entrapped microorganisms. Applied Microbiology and Biotechnology 20, 285-290.

Beunink, J. y Rehm, H.J. (1990). Coupled reductive and oxidative degradation of 4-chloro2-nitrophenol by a co-immobilized mixed culture system. Applied Microbiology and Biotechnology 34, 108-115.

Bhatia, R.B., Brinker, C.J., Gupta, A.K. y Singh, A.K. (2000). Aqueous sol-gel process for protein encapsulation. Chemical Material 12, 2434-2441.

Bleve, G., Lezzi, C., Chiriatti, M.A., D’Ostuni, I., Tristezza, M., Venere, D.D., Mita, S., Sergio, L. y Grieco, F. 2011. Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewaters. Bioresource Technology 102, 982-989.

Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology 74, 63- 67.

Brányik, T. y Kuncová, G. (2000). Changes in phenol oxidation rate of a mixed microbial culture caused by sol-gel immobilization. Biotechnology Letters 22, 555-560.

Brányik, T., Kuncová G. y Páca J. (2000). The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol. Applied Microbiology and Biotechnology 54, 168-172.

Brányik, T., Kuncová G., Páca, J. y Demnerová J. (1998). Encapsulation of microbial cells into silica-gel. Journal of Sol-Gel Science and Technology 13, 283-287.

Briglia, M., Nurmiaho-Lassila, E.L., Vallini, G., y Salkinoja-Salonen, M. (1990). The survival of the pentachlorophenol-degrading Rhodococcus chlorophenolicus PCP-1 and Flavobacterium sp. in natural soil. Biodegradation 1, 273-281.

Brink, L.E.S y Tramper, J. (1986). Modelling the effects of mass transfer on kinetics of propene epoxidation of immobilized Mycobacterium cells, 1. Pseudo-one-substrate conditions and negligible product inhibition. Enzyme and Microbial Technology 8, 281-288.

Cassidy, M.B., Lee, H. y Trevors, J.T. (1996). Environmental applications of immobilized microbial cells, a review. Journal of Industrial Microbiology 16, 79-100.

Chen, J-P. y Lin, Y-S. (2007). Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate-silicate sol-gel beads. Process Biochemistry 42, 934-942.

Chitiva, L.U. y Dussan, J. (2003). Evaluacion´ de matrices para la inmovilizacion de ´ Pseudomonas sp. en biorremediacion de fenol. ´ Revista Colombiana de Biotecnolog´ıa 2, 5-10.

Chung, T-P., Tseng, H-Y. y Juang, R-S. 2003. Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry 38, 1497-1507.

Conroy, J.F.T., Power, M.E, Martin, J., Earp, B., Hosticka, B., Daitch, CH.E. y Norris P.M. (2000). Cells in sol-gels I: a cytocompatible route for the production of macroporous silica gels. Journal of Sol-Gel Science and Technology 18, 269-283.

Coradin, T., Nassif, N. y Livage, J. (2003). Silicaalginate composites for microencapsulation. Applied Microbiology and Biotechnology 61, 429-434.

Cunningham, C.J., Ivshina, I.B., Lozinsky, V.I., Kuyukina, M.S. y Philp, J.C. (2004). Bioremediation of diesel-contaminated soil by microorganisms immobilized in polyvinyl alcohol. International Biodeterioration and Biodegradation 54,167-174.

de-Bashan, L.E. y Bashan, Y. (2010). Immobilized microalgae for removing pollutants, Review of practical aspects. Bioresource Technology 101, 1611-1627.

Dey, K. y Roy, P. (2009). Degradation of Trichloroethylene by Bacillus sp., Isolation strategy, strain characteristics, and cell immobilization. Current Microbiology 59, 256- 260.

Doria-Serrano, M. C., Riva-Palacio, G., RuizTrevino, F. A. y Hern ˜ andez-Esparza, M. ´ (2002). Poly(N-vinyl pyrrolidone)-Calcium Alginate (PVP-Ca-alg) composite hydrogels: physical properties and activated sludge immobilization for wastewater treatment. Industrial Engineering Chemistry Research 41, 3163-3168.

Dosoretz, C., Armon, R., Staroswtzky, J. y Rothschild, N. (1996). Entrapment of parathion hydrolase from Pseudomonas spp. in solgel glass. Journal of Sol-Gel Science and Technology 7, 7-l 1.

Dursun, A.Y. y Tepea, O. (2005). Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. Journal of Hazardous Materials 126, 105-111.

Dwyer, D.F., Krumme, M.L., Boyd, S.A. y Tiedje, J.M. (1986). Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Applied Environmental Microbiology 52, 345- 351.

Ehrdardt, H.M. y Rehm, H.J. (1985). Phenol degradation by microorganisms adsorbed on activated carbon. Applied Microbiology and Biotechnology 21, 32-36.

Fantroussi, S.E. y Agathos, S.N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology 8, 268-275.

Gentry, T.J., Josephson, K.L., y Pepper, I.L. (2004a). Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil. Biodegradation 15, 67.

Gentry, T.J., Rensing, Ch. y Pepper, I.L. (2004b). New approaches for bioaugmentation as a Remediation Technology. Critical Reviews in Environmental Science and Technology 34, 447- 494.

Godjevargova, T., Ivanova, D., Alexieva, Z. y Dimov, N. (2003). Biodegradation of toxic organic components from industrial phenol production waste waters by free and immobilized Trichosporon cutaneum R57. Process Biochemistry 38, 915-920.

Guiseley, K.B. 1989. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme and Microbial Technology 11, 706-716.

Hackel, U., Klein, J., Megnet, R. y Wagner, F. (1975). Immobilization of microbial cells in polymeric matrices. Applied Microbiology Biotechnology 1, 291 293.

Hanaki, K., Hirunmasuwana, S., y Matsuo, T. (1994). Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol. Water Research 28, 877-885.

Hannaford, A.M. y Kuek, C. (1999). Aerobic batch degradation of phenol using immobilized Pseudomonas putida. Journal of Industrial Microbiology and Biotechnology 22, 121-126.

Hernández-Esparza, M., Doria-Serrano, M.C., Acero-Salinas, G. y Ruiz-Treviño, F.A. (2006). Removal of high phenol concentrations with adapted activated sludge in suspended form and entrapped in calcium alginate/crosslinked poly(N-vinyl pyrrolidone) hydrogels. Biotechnology Progress 22, 1552-1559.

Hiemstra, H., Dijkhuizen, L. y Harder, W. (1983). Diffusion of oxygen in alginate gels related to the kinetics of methanol oxidation by immobilized Hansenula polymorpha cells. European Journal of Applied Microbiology Biotechnology 18,189-196.

Jack, T.R. y Zajic, J.E. (1977). The immobilization of whole cells. Advances in Biochemical Engineering/Biotechnology 5,125-145.

Jianlong, W., Liping, H., Hanchang, S. y Yi, Q. (2001). Biodegradation of quinoline by gel immobilized Burkholderia sp. Chemosphere 44, 1041-1046.

Juárez-Ramírez, C., Ruiz-Ordaz, N., CristianiUrbina, E. y Galíndez-Mayer, J. (2001). Degradation kinetics of phenol by immobilized cells of Candida tropicalis in a fluidized bed bioreactor. World Journal of Microbiology and Biotechnology 17,697-705.

Kadakol, J.C., Kamanavalli, Ch.M. y Shouche, Y. (2010). Biodegradation of carbofuran phenol by free and immobilized cells of Klebsiella pneumonia ATCC13883T. World Journal of Microbiology Biotechnology 27, 25-29.

Karabika, E., Kallimanis, A., Dados, A., Pilidis, G., Drainas, C. y Koukkou, A.I. (2009). Taxonomic identification and use of free and entrapped cells of a new Mycobacterium sp., strain spyr1 for degradation of polycyclic aromatic hydrocarbons (PAHs). Applied Biochemistry and Biotechnology 159,155-167.

Karigar, Ch., Mahesh, A., Nagenahalli, M. y Yun, D.J. (2006). Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation 17, 47-55.

Keweloh, H., Heipieper, H.J. y Rehm, H.J. (1989). Protection of bacteria against the toxicity of phenol by immobilization in calcium alginate. Applied Microbiology and Biotechnology 31, 383-389.

Kitova, A.E., Kuvichkina, T.N, Arinbasarova A.Y y. Reshetilov, A.N. (2004). Degradation of 2,4- dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1. Applied Biochemistry and Microbiology 40, 258-261.

Kotoucková, L., Vavrík, J., Nemec, M., Plocek, J. y Zdráhal Z. (1997). Use of immobilized cells of the strain Corynebacterium sp. for 4- nitrophenol degradation. Folia Microbiology 42, 509-512 .

Lee, C.M., Lu, C.J. y Chuang, M.S. (1994). Effects of immobilized cells on the biodegradation of chlorinated phenols. Water Science Technology 30, 87-90.

Li, B. y Takahashi, H. (2000). New immobilization method for enzyme stabilization involving a mesoporous material and an organic/inorganic hybrid gel. Biotechnology Letters 22, 1953- 1958.

Li, P., Wang, X., Stagnitti, F., Li, L., Gong, Z., Zhang, H., Xiong, X. y Austin Ch. (2005). Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. Environmental Engineering Science 22, 390-399.

Lin J-E., Wang, H.J. y Hickey, R.F. (1991). Use of coimmobilized biological systems to degrade toxic organic compounds. Biotechnology and Bioengineering 38,273-279.

Linhardt, R.J., Amotz, S., Rugh, S., Markussen, E.K., Thomsen, K., Bigwood, M.P., Naples, J.O., Blattler, W.A., Lambert, J. M. y Senter, P.D. (1987). Patents and literature immobilized biocatalysts. Applied Biochemistry and Biotechnology 14, 121-145.

Manohar, S. y Karegoudar, T.B. (1998). Degradation of naphthalene by cells of Pseudomonas sp. strain NGK 1 immobilized in alginate, agar and polyacrylamide. Applied Microbiology and Biotechnology 49, 785-792.

Manohar, S., Kim, S.K. y Karegoudar, T.B. (2001). Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Applied Microbiology Biotechnology 55, 311-316.

Medina-Moreno, S.A., Huerta-Ochoa, S., Lucho-Constantino, C.A., Aguilera-Vázquez, L., Jiménez-González, A. y Gutiérrez-Rojas, M. (2009). Modelado de la biodegradacion en biorreactores de lodos de hidrocarburos totales del petróleo intemperizados en suelos ´ y sedimentos. Revista Mexicana de Ingeniería Química 8, 245-258.

Mediana-Valtierra, J., García-Servin, J., Frausto-Reyes, C. y Calixto, S. (2005). Encapsulamiento de anatasa comercial en pel´ıculas delgadas de TiO2 depositadas sobre micro-rodillos de vidrio para la fotodegradación del fenol. Revista Mexicana de Ingeniería Química 4, 191-201

Meusel, M. y Rehm, H.J. (1993). Biodegradation of dichloroacetic acid by freely suspended and adsorptive immobilized Xanthobacter autotrophicus GJ10 in soil. Applied Microbiology and Biotechnology 40, 165-171.

Middeldorp, P.J.M., Briglia, M., y SalkinojaSalonen, M.S. (1990). Biodegradation of pentachlorophenol in natural polluted soil by inoculated Rhodococcus chlorophenolicus. Microbiology Ecology 20,123-139.

Mishra, S., Jyot, J., Kuhad, R. y Lal, B. (2001). Evaluation of inoculum addition to stimulate it in situ bioremediation of oily-sludge-contaminated soil. Applied and Environmental Microbiology 67, 1675-1681.

Mohammad, B.T. y Bustard, M.T. (2008). Fed batch bioconversion of 2-propanol by a solvent tolerant strain of Alcaligenes faecalis entrapped in Ca-alginate gel. Journal of Industrial Microbiology and Biotechnology 35, 677-684.

Moreira, S.M., Moreira-Santos, M., Guilhermino, L., Ribeiro, R., 2006. Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzyme Microbiology Technology 38, 135-141.

Mrozik, A. y Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research 165, 363-375.

Nair, I.C., Jayachandran, K., Shashidhar, S. (2007). Treatment of paper factory effluent using a phenol degrading Alcaligenes sp. under free and immobilized conditions. Bioresource Technology 98, 714-716.

Najafpour, R.G. (2007). Biochemical Engineering and Biotechnology. Elsevier, Holanda.

Nassif, N., Roux, C., Coradin, T., Rage, M.N., Bouvet, O.M.M., Livage, J. (2003). A sol-gel matrix to preserve the viability of encapsulated bacteria. Journal Material Chemistry 13, 203- 208.

Nawaz, M.S, Franklin, W. y Cerniglia, C.E. (1992). Degradation of acrylamide by immobilized cells of a Pseudomonas sp and Xanthomonas maltophilia. Canadian Journal of Microbiology 39, 207-212.

Oh, Y-S., Maeng, J. y Kim, S-J. (2000). Use of microorganisms-immobilized polyurethane foams to adsorb and degrade oil on water surface. Applied Microbiology and Biotechnology 54, 418-423.

O’Reilly, K.T. y Crawford, R.L. (1989a). Kinetics of p-cresol degradation by an immobilized Pseudomonas sp. Applied Environmental Microbiology 55, 866-870.

O’Reilly, K.T. y Crawford, R.L. (1989b). Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Applied and Environmental Microbiology 55, 2113-2118.

Overmeyer, C. y Rehm, H.J. (1995). Biodegradation of 2-chloroethanol by freely suspended and adsorbed immobilized Pseudomonas putida US2 in soil. Applied Microbiology and Biotechnology 43, 143-149.

Pallerla, S. y Chambers, R.P. (1998). Reactor development for biodegradation of pentachlorophenol. Catalysis Today 40, 103- 111.

Pannier, A., Oehm, C., Fischer, A.R., Werner, P., Soltmann. U. y Bottcher, H. (2010). ¨ Biodegradation of fuel oxygenates by sol-gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzyme and Microbial Technology 47, 291-296.

Park, J.K. y Chang, H.N. (2000). Microencapsulation of microbial cells. Biotechnology Advances 18, 303-319.

Pulz, O. y Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65, 635-648.

Quek, E., Ting, Y-P., Tan, H.M. (2006). Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Bioresource Technology 97, 32-38.

Raytchinova K.M. 2011. Inmobilization microbial cells in food process fermentation. Food Bioprocess Technology 4, 1089- 1118.

Rietti-Shati, M., Ronen, D. y Mandelbaum, R.T. (1996). Atrazine degradation by Pseudomonas strain ADP entrapped in sol-gel glass. Journal of Sol-Gel Science Technology 7, 77-79.

Rubilar, O., Bustamante, M., Tortella, G., Cea, M., Gianfreda, L., Acevedo, F. y Diez, M.C. (2011). Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi. Biodegradation 22, 31-41.

Sanjay, K., Asish, M., Pradeep, K., Saptadip, S., Bikash, R. Keshab, C. (2008). Production of xylanase by immobilized Trichoderma reesi SAF3 in Ca-alginate beds. Journal of Industrial Microbiology Biotechnology 35, 2445-249.

Sharanagouda, U. y Karegoudar, T.B. (2002). Degradation of 2-methylnaphthalene by free and immobilized cells of Pseudomonas sp. strain NGK1. World Journal of Microbiology and Biotechnology 18, 225-230.

Smidsrød O, y Skjak-Brka. G. (1990). Alginate as immobilization matrix for cells. Trends Biotechnology 8, 71-78.

Su, D. LIa,P., Frank, S. y Xiong, Z. (2006). Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. Journal of Environmental Sciences 18, 1204-1209.

Takizawa, S., Aravinthan, V., y Fujita, K., (1996). Nitrogen removal from domestic waste water using immobilized bacteria. Water Science and Technology 34, 431-440.

Tallur, P.N., Megadi, V.B. y Ninnekar, H. Z. 2009. Biodegradation of p-cresol by immobilized cells of Bacillus sp. strain PHN 1. Biodegradation 20, 79-83.

Valo, R.J, Haggblom, M.H. and SalkinojaSalonen, M. (1990). Bioremediation of chlorophenol containing simulated groundwater by immobilized bacteria. Water Research 24, 253-258.

van Veen J.D, van Overbeek L.S. y van Elsas J.D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology end Molecular Biology Reviews 61, 121-135.

Wang, X., Gong, Z., Li, P., Zhang L. y Hu, X. (2008). Degradation of pyrene and benzo(a)pyrene in contaminated soil by immobilized fungi. Environmental Engineering Science 25, 677- 684.

Westmeier F. y Rehm H.J. (1987). Degradation of 4-chlorophenol in municipal wastewater by adsorptive immobilized Alcaligenes sp. A 7- 2. Applied Microbiology and Biotechnology 26, 78-83.

Westmeier F. y Rehm H.J. (1987). Degradation of 4-chlorophenol in municipal wastewater by adsorptive immobilized Alcaligenes sp. A 7- 2. Applied Microbiology and Biotechnology 26, 78-83.

Xiangliang, P., Jianlong, W., y Daoyong, Z. (2005). Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry 40, 2799-2803.

Xiaoqiang, J., Jianping, W., Yan, J., Bai, J. Xianrui, Ch. y Ying, Z. (2006). Modeling for batch phenol biodegradation with immobilized Alcaligenes faecalis. AIChE Journal 52, 1294- 1303.

Yordanova, G., Ivanova, D., Godjevargova, G. y Krastanov, A. (2009). Biodegradation of phenol by Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane. Biodegradation 20, 717-726.

Zhang, Y., Ma, Y., Yang, F. Zhang, Ch, (2009). Continuous acetone-butanol-ethanol production by corn stalk immobilized cells. Journal of Industrial Microbiology and Biotechnology 36, 1117-1121.

Zhang L-S, Wu, W-Z, Wang, J-L. (2007). Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. Journal of Environmental Sciences 1, 1293-1297.
How to Cite
Martínez-Trujillo, M., & García-Rivero, M. (2020). REVISION. Revista Mexicana De Ingeniería Química, 11(1), 55-73. Retrieved from