• B. Bertrand
  • F. Martínez-Morales
  • M. R. Trejo-Hernández


Fungal laccases are phenol oxidases that have been extensively studied due to their relevance in diverse industrial applications including paper whitening, color reduction, elimination of phenolic compounds in wine, detoxification of polluted environments, revaluation of industrial wastes and water treatment. The principal difficulties in the use of these enzymes on an industrial scale are the cost of production and limitations on operation conditions (low stability and low catalytic activity). Over the last few decades, a variety of strategies have been evaluated to increase the productivity and improve the biochemical properties of these enzymes. The identification of inducers and the mechanisms by which gene expression is regulated is crucial for efforts to increase laccase production in fungi. Laccase gene transcription is regulated by various carbon and nitrogen sources, the presence of metal ions, the addition of diverse aromatic compounds related to lignin or its derivatives (phenolic and/or non-phenolic), and even the presence of other microorganisms. Although abundant information is available about the biochemical properties and kinetic parameters of laccases, it is difficult to compare different laccases due to the diversity of laccase producing strains, isoforms, laccase substrates, inducers and operating conditions. This review discusses the literature on the induction and production of fungal laccases


Baldrian, P. (2006). Fungal laccases-occurrence and
properties. FEMS Microbiology Reviews 30,
Bakkiyaraj, S., Aravindan, R., Arrivukkarasan,
S. and Viruthagiri, T. (2013). Enhanced
laccase production by Trametes hirusta using
wheat bran under submerged fermentation.
International Journal of Chemical Technology
Research 5, 1224-1238.
Benson, A. D., Karsch-Mizrachi, I., Clark, K.,
Lipman, D. J., Ostell, J. and Sayers, E. W.
(2012). GenBank. Nucleic Acid Research 40,
D 48-D 53.
Bertrand, B. (2010). Aislamiento y caracterizaci´on
bioqu´ımica de una lacasa inducida de Trametes
versicolor. Tesis de Licenciatura. Facultad de
Ciencias Biologicas (FCB) Universidad del ´
Estado de Morelos (UAEM).
Bertrand, B., Mart´ınez-Morales, F., Tinoco, R.,
Rojas-Trejo, S., Serrano-Carreon, L. and Trejo- ´
Hernandez, M. R. (2013). Induction of laccases ´
in Trametes versicolor by aqueous wood
extracts. World Journal of Microbiology and
Biotechnology DOI 0.1007/s11274-013-1420-3.
Bezalel, L. H. and Cerniglia, C.E. (1996).
Mineralization of polycyclic aromatic
hydrocarbons by White Rot Fungus Pleurotus
ostreatus. Applied and Environmental
Microbiology 62, 292-295.
Bollag, M-J. and Leonowicz, A. (1984). Comparative
studies of extracellular fungal laccases. Applied
and Environmental Microbiology 48, 849-854.
Bonnen, A. M., Anton, L. H. and Orth, A.B. (1994).
Lignin-Degrading Enzymes of the Commercial
Button Mushroom. Agaricus bisporus. Applied
and Environmental Microbiology 60, 960-965.
Bourbonnais, R., Paice, M. G., Reid, I.D., Lanthier,
P. and Yaguchi, M. (1995). Lignin oxidation
by laccase isozymes from Trametes versicolor
and role of the mediator 2, 2’-azinobis (3-
ethylbenzthiazoline-6-sulfonate) in kraft lignin
de-polymerization. Applied and Environmental
Microbiology 61, 1867-1880.
Bouws, H., Wattenberg, A. and Zorn, H.
(2008). Fungal secretomes-nature’s toolbox
for biotechnology. Applied Microbiology and
Biotechnology 80, 381-388.
Casas, N., Blanquez, P., Vincent,T. and Sarra,
M. (2013). Laccase production by Trametes
versicolor under limited-growth conditions
using dyes as inducers. Environmental
Technology 34, 1-4, 113-119.
Castanera, R., Perez, G., Omarini, A., Alfaro, ´
M., Pisabarro, A. G., Faraco, V., Amore, A.
and Ram´ırez, L. (2012). Transcriptional and
enzymatic profiling of Pleurotus ostreatus
laccase genes in submerged and solid
state fermentation cultures. Applied and
Environmental Microbiology 78, 4037-4045.
Collins, P. J. and Dobson, A. D. W. (1997).
Regulation of laccase gene transcription in
Trametes versicolor. Applied and Environmental
Microbiology 63, 3444-3450.
Conesa, A., Punt, P. J., Luijk, N. V. and Hondel,
V. D. C. (2001). The secretion pathway in
filamentous fungi: A biotechnological view.
Fungal Genetics and Biology 33, 155-171.
D´ıaz, R., Alonso S., Sanchez, C., Tomasini,
A., Bibbins-Mart´ınez, M., D´ıaz-Godinez,
G. (2011a). Characterization of growth
and laccases activity of several strains of
Pleurotus ostreatus in submerged fermentation.
BioResources 6, 282-290.
D´ıaz, R., Sanchez, C., Bibbins-Mart ´ ´ınez, M.D.,
D´ıaz-God´ınez, G. (2011b). Effect of medium
pH on laccase zymogram patterns produced by
Pleurotus ostreatus in submerged fermentation.
African Journal of Microbiology Research 5,
Elisashvili, V., Kachlishvili, E., Khardziani,
T. and Agathos, S. N. (2010). Effect of
aromatic compounds on the production of
laccase and manganese peroxidase by whiterot basidiomycetes. Journal of Industrial
Microbiology and Biotechnology 37, 1091-
Faraco, V., Giardina, P. and Sannia, G. (2003). Metalresponsive elements in Pleurotus ostreatus
laccase gene promoters. Microbiology 149,
Flores, C., Casasanero, R., Trejo-Hernandez, ´
M.R., Galindo, E. and Serrano-Carreon, L. ´
(2010) Production of laccases by Pleurotus
ostreatus in submerged fermentation in coculture with Trichoderma viride. Journal of
Applied Microbiology 108, 810-817.
Flores, C., Vidal, C., Trejo-Hernandez, M.R., ´
Galindo, E. and Serrano-Carreon, L. (2009) ´
Selection of Trichoderma strains capable of
increasing laccase production by Pleurotus
ostreatus and Agaricus bisporus in dual
cultures. Journal of Applied Microbiology 106,
Fonseca, M. I., Shimizu, E., Zapata, P. D. and
Villalba, L. L. (2010). Copper inducing effect
on laccase production of white rot fungi
native from Misiones (Argentina). Enzyme and
Microbial Technology 46, 534-539.
Freeman, C. J., Nayar, G. P., Begley, P. T.
and Villafranca, J. J. (1993). Stoichiometry
and spectroscopic indentity of copper centers
in phenoxazinone synthase. Biochemistry 32,
Fujihiro, S., Higuchi, R., Hisamatsu, S. and Sonoki,
S. (2009). Metabolism of hydroxylated PCB
congeners by cloned laccase isoforms. Applied
Microbiology and Biotechnology 82, 853-860.
Gavel, Y. and Von, H. G. (1990). Sequence
differences between glycosylated and nonglycosylated Asn-X-Thr/Ser acceptor sites:
implications for protein Engineering. Protein
Engineering 3, 433- 42.
Gomez, J., Pazos, M., Rodr ´ ´ıguez Couto, S. and
Sanroman M. A. (2005). Chestnut shell and ´
barley bran as potential substrates for laccase
production by Coriolopsis rigida under solidstate conditions. Journal of Food Engineering
68, 315-319.
Goudopoulou, A., Krimitzas, A. T. and Typas,
M.A. (2010). Differential gene expression of
ligninolytic enzymes in Pleurotus ostreatus
grown on olive oil mill wastewater. Applied
Microbiology and Biotechnology 88, 541-551.
Hatvani, N., Kredics, L., Antal, Z. and Mecs, ´
I. (2002). Changes in activity of extracellular
enzymes in dual cultures of Lentinula edodes
and mycoparasitic Trichoderma strains. Journal
of Applied Microbiology 92, 415-423.
Hattaka, A. (1994). Lignin-modifying enzymes
from selected white-rot fungi: production and
role in lignin degradation. FEMS Microbiology
Reviews 13, 125-135.
Ikehata, K., Buchanan, I. D. and Smith, D. W.
(2004). Recent developments in the production
of extracellular fungal peroxidases and laccases
for waste treatment. Journal of Environmental
Engineering and Science 3, 1-19.
Imran, M., Asad, M.J., Hadri, S. H. and Mehmood,
S. (2012). Production and industrial applications
of laccase enzyme. Journal of Cell and
Molecular Biology 10, 1-11.
Kilaru, S., Hoegger, P. and Kues, U. (2006).
The laccase multi-gene family in Coprinopsis
cinerea; it has seventeen different members that
divide into two distinct subfamilies. Current
Genomics 50, 45-60.
Kirk, T. K. and Farell, R. L. (1987). Enzymatic
“combustion”: The microbial degradation of
lignin. Annual Review of Microbiology 41, 465-
Klonowska, A., Le Petit, J. and Tron, T. (2001).
Enhancement of minor laccases production
in the basidiomycete Marasmius quercophilus
C30. FEMS Microbiology Letters 200, 25-30.

Kumar, S. and Mishra, A. (2011). Optimization of laccase production from WRF-1 on groundnut shell and cyanobacterial biomass: By application of Box-Behnken experimental design. Journal of Microbiology and Biotechnology Resources 1, 33-53.

Kunamneni, A., Plou, J. F., Ballesteros, A. and Alcalde, M. (2008). Laccases and their Applications: A patent review. Recent patents on Biotechnology 2, 10-24.

Larsson, S., Cassland, P. and Jonsson, L. J. (2001). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology 67, 1163-1170.

Lopez-P ´ erez, M., Loera O., Guerrero-Olazar ´ an, M., Viader-Salvado, J.M., Gallegos-L ´ opez, J., Fernandez, F.J., Favela-Torres, E., Viniegra-Gonzalez, G. (2010). Cell growth and ´ Trametes
versicolor laccase production in transformed Pichia pastoris cultured by solid-state or submerged fermentations. Journal of Chemical Technology and Biotechnology 85, 435-440.

Lorenzo, M., Moldes, D. and Sanroman, M. A. (2006). Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere 63, 912-917.

Lu, X. and Ding, S. (2010). Effect of Cu2+, Mn2+ and aromatic compounds on the production of laccase isoforms by Coprinus comatus. Mycoscience 51, 68-74.

Lundell, T. K., Makel ¨ a, M. R. and Hild ¨ en, K. (2010). Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. Journal of Basic Microbiology 50, 5-20.

Lyashenko, A. V., Zhukhlistova, N. E., Gabdoulkhakov, A. G., Zhukova, Y. N., Voelter, W., Zaitsev, V. N., Bento, I., Stepanova, E. V., Kachalova, G. S., Koroleva, O. V., Cherkashyn, E. A., Tishkov, V. I., Lamzin, V. S., Schirwitz, K., Morgunova, E. Y., Betzel, C., Lindley, P. F. and Mikhailov, A. M. (2006). Purification, crystallization and preliminary Xray study of the fungal laccase from Cerrena maxima. Structural Biology and Crystallization Communications 62, 954-957.

Mansur, M., Suarez, T. and Gonz ´ alez, A. E.(1998). Differential Gene Expression in the Laccase Gene Family from Basidiomycete I- 62 (CECT 20197). Applied and Environmental Microbiology 64, 771-774.

Marques De Souza, C. G., Tychanowicz, G. K., Farani De Souza, D. and Peralta, R. M. (2004). Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. Journal of Basic Microbiology 44, 129-136.

Mathur, G., Mathur, A., Sharma, B.M. and Chauhan, R.S. (2013). Enhanced production of laccase from Coriolus sp. using PlackettBurman design. Journal of Pharmacy Research 6, 151-154.

Mayer, A.M. (1986). Polyphenol oxidases in plantsrecent progress. Phytochemistry 26, 11-20.

Mayolo-Deloisa, K., Mach´ın-Ram´ırez, C., RitoPalomares, M. and Trejo-Hernandez, M.R. (2011). Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of Agaricus bisporus. Chemical Engineering and Technology 34, 1368-1372.

Messerschmidt, A., Rossi, A., Ladenstein, R., Huber, R., Bolognesi, M., Gatti, G., Marchesini, A., Petruzzelli, R. and Finazziagro, A. (1989) X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini-analysis of the polypeptide fold and a model of the copper sites and ligands. Journal of Molecular Biology 206, 513-529.

Mishra, A., Kumar, S. and Kumar, S. (2008). Application of Box-Behnken experimental design for optimization of laccase production by Coriolus versicolor MTCC138 in solidstate fermentation. Journal of Scientific and Industrial Research 66, 1098-1107.

Missall, T. A., Moran, J.M Corbett, J. A. and Lodge, J K. (2005). Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiolspecific antioxidant Tsa1. Eukaryotic Cell 4, 202-208.

Moldes, D., Gallego, P.P., Rodr´ıguez-Couto, S. and Sanroman, A (2003). Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnology Letters 25, 491-495.

Moldes, D., Lorenzo, M. and Sanroman, M. A. (2004). Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. Biotechnology Letters 26, 327-330.

Nandal, P., Ravella, S. R. and Kuhad, R. C. (2013). Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology. Scientific Reports 3, 1386.

Necochea, R. A., Valderrama, B., Sandoval, D. S., Mallol-Folch, L. J., Duhalt-Vazquez, R.and Iturriaga, G. (2005). Phylogenetic and biochemical characterization of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters 244, 235- 241.

Neifar, M., Kamoun, A., Jaouani, A., EllouzeGhorbel, R. and Ellouze-Chaabouni, S. (2011). Application of asymetrical and Hoke designs for optimization of laccase production by the white-rot fungus Fomes fomentarius in solid-state fermentation. Enzyme Research,

Nityanand, C. and Desai, S. S. (2006). Microbial Laccases and their Applications: A Review. Asian Journal of Biotechnology 3, 98-124.

Nyanhongo, G. S., Gomesa, B. J., Gubitzc, G. M., Zvauyab, G. R., Readd, J. and Steiner, W. (2002). Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Resources 36, 1449-1456.

Osma, J. F., Toca-Herrera, J. L. and Rodr´ıguezCouto, S. (2010). Review Article Uses of Laccases in the Food Industry. Enzyme Research Volume, doi 10.4061/2010/918761.

Palmieri, G., Giardina, P., Bianco, C., Fontanella, B. and Sannia, G. (2000). Copper Induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and Environmental Microbiology 66, 920-924.

Pedersen, G. and Schmidt, M. (1992). International patent Novo Nordisk A/S No. WO9218687.

Periasamy, R. and Palvannan, T. (2010). Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology. Journal of Basic Microbiology 50, 54856.

Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G. and Faraco, V. (2011). Induction and Transcriptional regulation of laccases in fungi. Current Genomics 12, 104-112.

Poojary, H. and Mugeraya G. (2012). Laccase production by Phellinus noxius hpF17: optimization of submerged culture conditions by Response Surface Methodology. Research in Biotechnology 3, 9-20.

Risdianto, H., Suhardi, S. H., Setiadi, T. and Kokugan, T. (2010). The influence of temperature on laccase production in solid state fermentation by using white rot fungus Marasmius sp. The 1st international seminar on fundamental and application ISFA ChE 2010 of Chemical Engineering.

Riva, S. (2006). Laccases: blue enzymes for green chemistry. Trends in Biotechnology 24, 219-226.

Rodr´ıguez-Couto, S., Gund´ın, M., Lorenzo, M. and Sanroman, M. A. (2002). Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochemistry 38, 249-255.

Rodr´ıguez-Rincon, F., Suarez, A., Lucas, M., Larrondo, L.F., De la Rubia, T., Polaina, J. and Mart´ınez, J. (2010). Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. Archives of Microbiology 192, 883-892.

Saraiva, J. A., Tavares, A. P. and Xavier, A. M. (2012). Effect of the inducers veratryl alcohol, xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor. Applied Biochemical and Biotechnology 167, 685-93.

Savoie, J. M., Mata, G. and Billette, C. (1998). Extracellular laccase production during hyphal interactions between Trichoderma sp. and shiitake, Lentinula edodes. Applied Microbiology and Biotechnology 49, 589-593.

Savoie, J. M. and Mata, G. (1999). The antagonistic action of Trichoderma sp. hyphae to Lentinula edodes hyphae changes lignocellulolytic activities during cultivation in wheat straw. World Journal of Microbiology and Biotechnology 15, 369-373.

Scholosser, D., Grey, R. and Fritsche, W. (1997). Patterns of ligninolytic enzymes in T. versicolor. Distribution of extra-and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Applied Microbiology and Biotechnology 47, 412-418.

Schuckel, J., Matura, A., Van P ¨ ee, K. H. (2011). One- copper laccase-related enzyme from Marasmius sp.: purification, characterization and bleaching of textile dyes. Enzyme Microbiology and Technology 48, 278-84.

Shah, V. and Nerud, F. (2002). Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Canadian Journal of Microbiology 48, 857-870.

Sharma K, K., Shrivastava, B., Sastry, V. R., Sehgal, N and Kuhad, R.C. (2013). Middleredox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals. Scientific Reports 3, 1299.

Sridhar, S., Chinnathambi, V., Arumugam, P. and Suresh, K. P. (2012). Extracellular laccase enzyme production by Rigidoporous sp. Using the Placket-Burman statistical design, spectral analysis and response surface methodologybased optimization of laccase-catalyzed decolorization of acid blue 133-a prototype texile azo dye. Journal of Agriculture and Environmental Sciences 12, 1617-1624.

Struhl, K. (1999). Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes. Cell 98, 1-4.

Taylor, A. B., Stoj, C. S., Ziegler, L., Kosman, D. J. and Hart, P. J. (2005). The copperiron connection in biology: structure of the metallooxidase Fet3p. Proceedings of the National Academy of Sciences USA 102, 15459-15464.

Thurston, C. (1994). The structure and function of fungal laccases. Microbiology 140, 19-26.

Tinoco, R., Pickard, M. A and Vazquez- Duhalt, R. (2001). Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Letters in Applied Microbiology 32, 331-336.

Tinoco, R., Acevedo, A., Gallindo, E. and SerranoCarreon, L. (2011). Increasing ´ Pleurotus ostreatus laccase production culture medium optimization and copper/lignin synergistic induction. Journal of Industrial Microbiology and Biotechnology 38, 531-540.

Tlecuitl-Beristain, S., Sanchez, C., Loera, O., Robson, G.D., D´ıaz-Godinez, G. (2008). Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycological Research 112, 1080-1084.

Trejo-Hernandez, M.R., L ´ opez-Mungu ´ ´ıa, A., Quintero-Ram´ırez, R. (2001). Residual compost of Agaricus bisporus as a source of crude laccase for enzymatic oxidation of phenolic compounds. Process Biochemistry 36, 83-87.

Valderrama, B., Oliver, P., Medrano-Soto, A. and Vazquez-Duhalt, R. (2003). Evolutionary and structural diversity of fungal laccases. Antonie van Leeuwenhoek 84, 289-299.

Villasenor, F., Loera, O., Campero, A. and Viniegra-Gonzalez, G. (2004) Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the latter. Fuel Processing Technology 86, 49-59.

Xiao, Y. Z., Chen, Q., Hang, J., and Shi, Y. Y. (2004). Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2. Mycologia 96, 26-35.

Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., Schneider, P., Halkier, T., Mondorf, K and Dalbøge, H. (1996). Purification, characterization, molecular cloning, and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Applied and Environmental Microbiology 62, 834-841.

Yasmeen, O., Asgher, M., Sheikh, M. A and Nawaz, H. (2013). Optimization of ligninolytic enzyme production through response surface methodology. Bioresources 8, 944-968.
How to Cite
Bertrand, B., Martínez-Morales, F., & Trejo-Hernández, M. R. (2020). FUNGAL LACCASES: INDUCTION AND PRODUCTION. Revista Mexicana De Ingeniería Química, 12(3), 473-488. Retrieved from