DEGRADATION OF REACTIVE RED 120 AZO DYE IN AQUEOUS SOLUTIONS USING HOMOGENEOUS/HETEROGENEOUS IRON SYSTEMS

  • J. Vergara-Sánchez Departamento de Materiales Solares, Centro de Investigación en Energía de la UNAM
  • J.P. Pérez-Orozco Departamento de Materiales Solares, Centro de Investigación en Energía de la UNAM
  • R. Suárez-Parra Departamento de Materiales Solares, Centro de Investigación en Energía de la UNAM
  • I. Hernández-Pérez Universidad Autónoma Metropolitana-A, Dpto. de Ciencias Básicas
Keywords: nanoparticles, azo-dye, discoloration kinetic, oxyhydroxides, COD

Abstract

Advanced oxidation processes (AOPs) are the most attractive methods to degrade different organic pollutants. The AOPs have grown extensively because water quality control and regulations have become very strict in many countries. In this study, the dye reactive red 120 (RR-120) was considered for degradation using homogenous (Fenton and Photo Fenton) and heterogeneous (suspension of nanoparticles -NPs- of iron oxyhydroxides and NPs of iron oxyhydroxides supported on a mesoporous material SBA-15) process. The discoloration kinetic study of reactive red 120 solutions with a 100 mg/L concentration and pH ∼3 was carried out, with hydrogen peroxide (H2O2) as oxidant agent and different iron salts types (FeCl2, FeCl3, FeSO4 and Fe2(SO4)3). The determined discoloration rate constants were higher for the homogeneous than those for heterogeneous catalytic processes. The RR-120 oxidation degree was measured by chemical oxygen demand (COD) with 90 percentages by the photoFenton process.

References

Al-Kdasi, A., Idris, A., Sead, K. and Guan, C. T. (2004). Treatment of textile wastewater by advanced oxidation processes- a Review. Global NEST: The International Journal 6, 221- 230.

Arslan-Alaton, I., Tureli, G. and Olmez-Hanci, T. (2009). Treatment of azo dye production wastewater using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology. Journal of Photochemistry and Photobiology A. Chemistry 202, 142-153.

Bandara, J., Klehm, U. and Kiwi, J. (2007). Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation. Applied Catalysis B: Environmental 76, 73-81.

Buki, K. G., Kirsten, E. and Kun, E. (1987). Isolation of Adenosine Diphosphoribosyltransferase by precipitation with reactive red 120 combined with affinity chromatography. Analytical Biochemistry 167, 160- 166.

Carneiro, P. A., Osugi, M. E., Sene, J. J., Anderson, M. A. and Zanoni, M.V .B. (2004). Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. Electrochimical Acta 4, 3807-3820.

Celekli, A., Yavuzatmaca, M. and Bozkurt, H. (2009). Kinetic and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscule. Chemical Engineering Journal 152, 139-145.

Cornelle, R. M. and Schwertmann, U. (2003). The iron oxides. Second edition Wiley-VCH GmbH & Co. KGa.A .

De Laat, J. and Gallard, H. (1999). Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environmental Science & Technology 33, 2726-2732.

De Laat, J., Le Troung, G. and Legube, B. (2004). A comparative study of the effects of chloride sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere 55, 715-723.

Deng, H., Li, X., Peng, Q., Wang, X., Chen, J. and Li, Y. (2010). Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie International 44, 2782-2785.

EPA, Method 410.4. (1993). The determination of chemical oxygen demand by semiautomated colorimetry. Available at: http://www.caslab.com/EPA-Method-410 4/. Accessed: June, 18, 2011

Feng, J., Hu, X., Yue, P.L., Zhu, H. Y. and Lu, G.Q. (2003). Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photoFenton reaction. Water Research 37, 3776- 3784.

Flaschka, H. A., Barnard A. J. and Sturrock, P.E. (1980). Qu´ımica Anal´ıtica Cuantitativa. Editorial CECSA Vol. 11, Mexico

Fujishima, A., Rao, T. N., and Tryk, D. A. (2000). TiO2 photocatalysts and diamond electrodes. Electrochemical Acta 45, 4683-4690.

Gou, M., Qu, Y., Zhou, J., Ma, F. and Tan, L. (2009). Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. Journal of Hazardous Materials 170, 314-319.

Hu, X., Yu, J. C. and Gong, J. (2007). Fast production of self-assembled hierarchical rFe2O3 nanoarchitectures. Journal of Physical Chemistry C 111, 11180-11185.

Karunakaran, C. and Dhanalakshmi, R. (2008). Semiconductor-catalyzed degradation of phenols with sunlight. Solar Energy Materials & Solar Cells 92, 1315-1321.

Liu, X., Gou, J., Cheng, Y., Li, Y., Xu, G. and Cui, P. (2008). Surfactant-freefabricationof αFe2O3 structures with flower-like morphology in aqueous solution. Journal of Crystal Growth 311, 147-151.

Machulek, A. Jr., Morales, J. E. F., Vautier-Giongo, C., Silverio, C. A., Friedrich, L. C., Nascimento, C. A. O., Gonzalez, M. C. and Quina F.H. ´ (2007). Abatement of the inhibitory effect of chloride anions on the photo-fenton process. Environmental Science & Technology 41, 8459- 8463.

Mahmoodi, N. M. and Arami, M. (2006). Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium(IV) oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 182, 60-66.

Montiel-Palacios, E., Medina-Mendoza, A. K., Sampieri, A., Angeles-Chávez, C., Hernández-Pérez I. and Suárez-Parra, R. (2009). Photo-catalysis of phenol derivatives with Fe2O3 nanoparticles dispersed on sba-15. Journal of Ceramic Processing Research 10, 548-552.

Orozco, S. L., Bandala, E. R., Arancibia-Bulnesa, C. A., Serrano, B., Suarez-Parra, R. and Hernández-Pérez, I. (2008). Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photoassisted Fe(II)/H2O2 and Fe(III)/H2O2 systems. Journal of Photochemestry and Photobiology A: Chemistry 198, 144-149.

Pera-Titus, M., García-Molina, V., Baños, M. A., Jiménez, J. and Espulgas S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental 47, 219- 156.

Pirillo, S., Ferreira, M. L. and Rueda, E. H. (2009). The effect of pH in the adsorption of alizarin and eriochrome blue black R onto iron oxides. Journal of Hazardous Materials 168, 168-178.

Qin, W., Yang, C., Yi, R. and Gao, G. (2011). Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. Journal of Nanomaterials 2011, 1-6.

Reese, C. E. and Asher, S. A. (2002). Emulsifierfree emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals. Journal of Colloid and Interface Science 248, 41-46.

Safarzadeh-Amiri, A., Bolton J.R. and Cater S.R. (1996). Ferrioxalate-mediated photodegradation organic pollutants in contaminated water. Water Research 31 (4), 787-798.

Skoog, D. A., West, D. M., Holler, F. J., and Crouch, S. R. (2004). Qu´ımica Anal´ıtica. 7th edition. McGraw-Hill, New York., 474-475.

Sol, C. and Tilley, R. J. D. (2001). Ultraviolet laser irradiation induced chemical reactions of some metal oxides. Journal Materials Chemistry 11, 815-820.

Tanaka, K., Padermpole, K. and Hisanga, T. (1999) Photocatalytic degradation of commercial azo dyes. Water Research 34, 327-333.

Trujillo-Camacho, M. E., García-Gómez, C., Hinojosa-Palafox, J. F. and Castillón-Barraza, F. F. (2010). Evaluation of TiO2/clinoptilolite composites in MV-2B dye photodegradation on CPC solar reactor. Revista Mexicana de Ingeniería Química 9, 139-149.

Weber, E. J. and Adams, R. L. (1995). Chemicaland sediment-mediated reduction of the azo dye disperse blue 79. Environmental Science & Technology 29, 1163-1170.

Yu, Y., Yu, J. C., Chan, C. Y., Che, Y. K., Zhao, J. C., Ding, L., Ge, W. K. and Wong, P. K. (2005). Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Applied Catalysis B: Environmental 61, 1-11.

Zhang, F., Yediler, A. and Liang, X. (2007). Decomposition pathways and reaction intermediate formation of the purified, hydrolyzed azo reactive dye C.I. reactive Red 120 during ozonation. Chemosphere 67, 712- 717.

Zhang ,Z.,Hossain, M. D. F., Miyazaki, T. and Takahashi, T. (2010). Gas phase photocatalytic activity of ultrathin Pt layer coated on α-Fe2O3 films under visible light illumination. Environmental Science & Technology 44, 4741- 4746.

Zhou, W., Tang, K., Zeng, S. and Qi, Y. (2008). Room temperature synthesis of rod-like FeC2O4-2H2O and its transition to maghetite, magnetite and hematite nanorods through controlled thermal decomposition. Nanotechnology 19, 1-9.
Published
2020-04-06
How to Cite
Vergara-Sánchez, J., Pérez-Orozco, J., Suárez-Parra, R., & Hernández-Pérez, I. (2020). DEGRADATION OF REACTIVE RED 120 AZO DYE IN AQUEOUS SOLUTIONS USING HOMOGENEOUS/HETEROGENEOUS IRON SYSTEMS. Revista Mexicana De Ingeniería Química, 11(1), 121-131. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1527
Section
Environmental Engineering