• L.R. Torres-Barajas
  • G. Aguilar-Osorio
Keywords: xylanases, corn cobs, protein, desorption, Aspergillus


Carbohydrate degrading enzymes produced by fungus such as Aspergillus are interesting due to its application into process of ethanol production using cheap materials such as agro-wastes. Proteins of xylanolytic system which are secreted during Aspergillus flavipes FP-500 culture with corn cobs as a carbon source, are adsorbed in the solid matrix of cobs unlike wheat bran in which virtually are non-absorbed. Recovery of proteins with washing solutions from both agro-wastes and protein sequences of some of these proteins shows: that increase of pH improves protein desorption, adsorption of xylanolytic system proteins is pretty much selective in wheat bran than in corn cobs and the adsorption of that proteins could be influenced by random interaction between protein and polysaccharide surface as well as specific interactions of proteins with polysaccharides by carbohydrate binding domains of certain involved proteins.


Arora, N., Kumar, A., Mutyala, S., Suryanarayana, U. (2009). Comparative characterization of commercially important xylanase enzymes. Bioinformation 3, 446-453

Benett, J.W. (1998). Review article. Mycotechnology: The Role of fungi in fitotechnology. Journal of Biotechnology 66, 101-107

Black, G., Rixon, J., Clarke, J., Hazlewood, G., Ferreira, L., Bolam, D., Gilbert, H. (1997). Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. Journal of Biotechnology 57, 59-69

Bolio, G., Valadez, A., Veleva, L., Andreeva, A. (2011). Cellulose whiskers from agro-industrial banana wastes: isolation and characterization. Revista Mexicana de Ingeniería Química 10, 291-299

Cantarel, B., Coutinho, P., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B. (2009). The Carbohydrate-Active EnZyme database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research 37, D233-D238. (Carbohydrate Active Enzymes database, disponible en http://www.cazy.org/).

Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials 157, 220-229.

Douglas, J., Johnson, H., Granick, S. (1993). A simple kinetic model of polymer adsorption and desorption. Science 262, 2010-2012

Farinella, N.V., Matos, G.D., Arruda, M.A.Z. (2007). Grape bagasse as potential biosorbent of metals in effluent treatments. Bioresource Technology 98, 1940-1946.

Feramisco, J., Burridge, K. (1980). A rapid purification of α-actinin, filamin and 130,000-dalton protein from smooth muscle. The Journal of Biological Chemistry 255, 1194-1199

Fernandes, A., Fontes, C., Gilbert, H., Hazlewood, G., Fernandes T., Ferreira, L. (1999). Homologuos xylanases from Clostridium thermocellum: evidence for bifunctional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochemistry Journal 342, 105-110.

Flores, T., Gutiérrez, M., Revah, S., Favela, E. (2011). Estudio comparativo de oxigenasas producidas por Aspergillus niger ATCC 9642 en fermentacion en estado sólido y sumergido. Revista Mexicana de Ingeniería Química 10, 189-207

Gonc¸alves, F., Gonc¸alves, A., Gonc¸alves, E., Azevedo, M., Pinto, B., Duque, P., Sobral, L., Souza, E., Félix, C., Ferreira, E. (2010). Evaluation of hollocelulase production by plant-degrading fungi grown on agro-industrial residues. Biodegradation 21, 815-824

Gordillo, F., Caputo, V., Peirano, A., Chávez, R., van Beeumen, J., Vandenberghe I., Claeyssens, M., Bull, P., Ravanal, M., Eyzaguirre, J. (2006). Penicillum purpurogenum produces a family 1 acetyl xylan esterase containing a carbohydrate binding domain: characterization of the protein and its gene. Micologycal Research 110, 1129-1139.

Graham, H., Hesselman, K., Aman, A. (1986). The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet. The Journal of Nutrition 116, 242-251

Kabel, M., Borne, H., Vincken, J.P., Voragen, A.G.J., Schols, H. (2007). Structural differences of xylans affect their interaction with cellulose. Carbohydrate Polymers 69, 94-105.

Kadam, K., McMillan, J. (2003). Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technology 88, 17-25.

Kiyohara, M., Sakaguchi, K., Yamaguchi, K., Araki, T., Ito, M. (2009). Characterization and application of carbohydrate-binding modules of b-1,3 xylanase XYL 4. The Journal of Biochemistry146, 633-641.

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Luis, A., Venditto, I., Temple, M., Rogowsky A., Baslé, A., Xu, J., Know, P., Prates, J., Ferreira, L., Fontes, C., Najmudin, S., Gilbert, H. (2013). Understanding how non catalytic carbohydrate binding modules can display specificity for xyloglucan. The Journal of Biological Chemistry 288, 4799- 4809.

Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428.

Mogollon, G., García, J.A., León, W. (2008). Materias primas fibrosas. En: Panorama de la industria de celulosa y papel en Iberoamerica (Ma.C. Areaedit), Pp 15-60. Red Iberoamericana de docencia e investigación en celulosa y papel, Argentina.

Ng, T.B. (2004). Peptides and Proteins from Fungi. Peptides 25, 1055-1073

Nigam, P., Pandey, A. (2009). Solid state fermentation technology for bioconversion of biomass of agricultural residues. En: Biotechnology for Agro industrial Residues Utilization (P.S. Nigam, A. Pandey eds.), Pp 197-221. Springer Science + Bussines Media.

Okeke, B.C., Obi, S.K. (1994). Lignocellulose and sugar composition of some agro-waste materials. Bioresource Technology 47, 283-284

Paldi, T., Levy, I., Shosheyov, O. (2003). Glucoamylase starch binding-domain in Aspergillus niger B1: molecular cloning and functional characterization. Biochemistry Journal 372, 905-910.

Quentin, M., Ebbelaar, M., Derksen, J., Mariani, C., van der Valk, H. (2002). Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi. Applied Microbial Biotechnology 58, 658-662.

Quiquampoix, H. (2002). Enzyme adsorption on soil mineral surfaces and consequences for the catalytic activity. En: Enzymes in the Environment. Activity, Ecology and Applications (R. Burns and R. Dick eds.) Pp 285-306. Marcel Dekker Inc, New York.

Van Tassel, P., Viot, P., Tarjus, G. (1997). A kinetic model of partially reversible protein adsorption. Journal of Chemical Physical 106, 961-770
How to Cite
Torres-Barajas, L., & Aguilar-Osorio, G. (2020). XYLANOLYTIC SYSTEM PROTEINS DESORPTION FROM Aspergillus flavipes FP-500 CULTURES WITH AGROWASTES. Revista Mexicana De Ingeniería Química, 12(3), 518-525. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1530