ELECTROCHEMICAL BEHAVIOR OF THIN FILMS OF CrN / Cr OBTAINED VARYING THE BIAS POTENTIAL

  • W. Aperador Departamento de Ingeniería Mecatrónica, Universidad Militar Nueva Granada
  • J. H. Bautista Ruíz Departamento de Física, Universidad Francisco de Paula Santander
  • O. Pardo Cuervo Escuela de Ciencias Químicas. Universidad Pedagógica y Tecnológica de Colombia
Keywords: Kramers-Kronig, CrN/Cr, EIS, Tafel, circuito equivalente

Abstract

In this article is presented the applicability of the Kramers-Kronig relations (KK) to the validity study of the impedance measurements (EIS) on the variation of bias potential of the CrN / Cr, depositing on AISI 4140 steel substrates by the method of DC reactive sputtering magnetron in contact with NaCl 0.5 M. Nyquist diagrams show a capacitive behavior with a high impedance module and two time constants. In the implementation of KK integrals, were used two procedures: one based on an equivalent circuit that meets the KK relations, and another, according to an ohmic resistor connected in parallel. Additionally, from Tafel polarization curves were validated the found results with EIS. The morphology of the coating was evaluated by scanning electron microscopy of high-resolution; the optical microscopy (OM) was used to determine the morphology after the electrochemical evaluation. The results of impedance as a function of bias potential of CrN / Cr deposited on AISI 4140 steel substrates satisfy the KK relations; also it was found a dependency ratio of polarization potential on corrosion rate.

References

Agarwal, P., Orazem, M.E. y Garcia-Rubio L.H. (1992). Measurement models for electrochemical impedance spectroscopy I. Demonstration of applicability. Journal of the Electrochemical Society 139, 1917-1927.

ASTM G5-03 Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, West Conshohocken, PA, American Society for Testing and Materials, 2003.

ASTM G59-04 Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, West Conshohocken, PA, American Society for Testing and Materials, 2004.

Aperador, W. Caicedo, J.C. Espana, C. Cabrera, G. ˜ y Amaya, C. (2010). Bilayer period effect on corrosion-erosion resistance for [TiN/AlTiN]n multilayered growth on AISI 1045 steel. Journal of Physics and Chemistry of Solids 71, 1754-1759.

Bernard, A., Boukamp, N. H., Pieter, N. y Dave, H.A. (2011). The impedance of thin dense oxide cathodes. Solid State Ionics 192, 404-408.

Boukamp, B.A. (1995) A linear Kronig-Kramers transform test for immittance data validation. Journal of the Electrochemical Society 142, 1885-1894.

Bouwmeester, H.J.M., Song, C., Zhu, J., Yi, J.M., Sint Annaland, V y Boukamp, B.A. (2009). A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Physical Chemistry Chemical Physics 11, 9640-9643.

Cáicedo, J.C., Amaya, C., Cabrera, G., Esteve, J., Aperador W., Gomez, M.E. y Prieto. P. (2011). Corrosion surface protection by using titanium carbon nitride/titanium?niobium carbon nitride multilayered system. Thin Solid Films 519, 6362-6368.

Correa, F., Cáicedo, J.C., Aperador, W., Rincón. C.A y Bejarano, G. (2008). Mejoramiento de la resistencia a la corrosión del acero AISI ´ 4140 utilizando multicapas de titanio/nitruro de titanio. Revista de la Facultad de Ingeniería de la Universidad Antioquia 46, 7-14.

Ding X-Z. (2008). Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc.Thin Solid Films 516, 5716-5720.

Endrino, J.L., Fox-Rabinovich, J.L. y Gey, C. (2006). Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel. Surface & Coatings Technology 200, 6840-6845.

Esteban, J.M. y Orazem, M.E. (1991). On the application of the Kramers-Kronig relations to evaluate the consistency of electrochemical impedance data. Journal of the Electrochemical Society 138, 67-76.

Gabrielli, C., Keddam, M. y Takenouti, H. (1993). Kramers-Kronig transformation in relation to the interface regulating device. Electrochemical Impedance: Analysis and Interpretation, ASTM STP 1188, 140-153.

Gertner, V. y Schlesinger, M. (2003). Electrochemistry and medical devices: friend or foe?. The Electrochemical Society Interface 12, 20-24.

Hassanzadeh, A. (2007). Validity of dynamic electrochemical impedance spectra of some amine corrosion inhibitors in petroleum/water corrosive mixtures by Kramers- transformation. Corrosion Science 49, 1895-1906.

Ispas, A., Matsushima, H., Bund, A. y Bozzini, B. (2011). A study of external magnetic-field effects on nickel-iron alloy electrodeposition, based on linear and non-linear differential AC electrochemical response measurements. Journal of Electroanalytical Chemistry 651, 197-203.

Johnson, D. (2000) ZPlot, ZView Electrochemical Impedance Software, Version 2.3b, Scribner Associates Inc.

Macdonald, D.D. (1990). Some advantages and pitfallson electrochemical impedance spectroscopy. Corrosion 46, 229-242.

Macdonald, D.D., Sikora, E. y Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta 43, 87- 107.
Published
2020-04-07
How to Cite
Aperador, W., Bautista Ruíz, J. H., & Pardo Cuervo, O. (2020). ELECTROCHEMICAL BEHAVIOR OF THIN FILMS OF CrN / Cr OBTAINED VARYING THE BIAS POTENTIAL. Revista Mexicana De Ingeniería Química, 11(1), 145-154. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1535