PREPARATION AND PROPERTIES OF ALPHA-LIPOIC ACID-LOADED CHITOSAN NANOPARTICLES

  • V. Velasco-Rodríguez Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • M. Cornejo-Mazón Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • J.O. Flores-Flores Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México
  • G.F. Gutiérrez-López Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
  • H. Hernández-Sánchez Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional
Keywords: alpha-lipoic acid, chitosan, nanoparticles, nanoencapsulation, ionic gelation

Abstract

The aim of this study was to prepare alpha-lipoic acid (ALA) loaded chitosan nanoparticles by the ionotropic gelation between chitosan and sodium pyrophosphate or tripolyphosphate and the use of the surfactant poloxamer 188 as a stabilizer. Their particle size and distribution along with their encapsulation efficiency and zeta potential was determined. The smallest particle size (180 nm) were obtained when sodium pyrophosphate was used as the polyanion. The addition of the poloxamer incresased the particle size independently of the polyanionic compound used. All the polydispersity indexes were > 0.2, indicating that all the chitosan nanoparticle systems were polydisperse. The highest encapsulation efficiency (62.4%) was obtained in the case of the tripolyphosphate and poloxamer system. The isoelectric point (pI) for all the chitosan nanoparticles lied in the 6.8 - 7.4 range. All the chitosan nanoparticles, with the exception of the ones prepared with TPP and poloxamer 188, were stable at pH values ≤ 5.3, indicating a good potential for use in foods.

References

Alexander, M. and Dalgleish, D.G. (2006). Dynamic light scattering techniques and their applications in food science. Food Biophysics 1, 2-13.

Bernkop-Schnürch, A., Schuhbauer, H., Clausen, A.E. and Hanel, R. (2004). Development of a sustained release dosage form for α-lipoic acid. I. Design and in vitro evaluation. Drug Development and Industrial Pharmacy 30, 27- 34.

Calvo, P., Remuñán-López, C., Vila-Jato, J.L. and Alonso, M.J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science 63, 125-132.

Carlson, D.A., Smith, A.R., Fischer, S.J., Young, K.L. and Packer, L. (2007). The plasma pharmacokinetics of R-(+)-lipoic acid admisnistered as sodium r-(+)-lipoate to healthy human subjects. Alternative Medicine Review 12, 343-351.

Desai, M.P., Labhasetwar, V., Amidon, G.L. and Levy, R.J. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharmaceutical Research 13, 1838-1845.

Du, W.L., Niu, S.S., Xu, Y.L., Xu, Z.R. and Fan, C.L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers 75, 385-389.

El-Shaboury, M.H. (2002). Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. International Journal of Pharmaceutics 249, 101-108.

Huang, Q., Yu, H. and Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science 75, 50-57.

Kofuji, K., Nakamura, M., Isobe, T., Murata, Y. and Kawashima, S. (2008). Stabilization of α-lipoic acid by complex formation with chitosan. Food Chemistry 109, 167-171.

Kofuji, K., Isobe, T. and Murata, Y. (2009). Controlled release of alpha-lipoic acid through incorporation into natural polysaccharide-based gel beads. Food Chemistry 115, 483-487.

Kong, M., Chen, X.G., Xing, K. and Park, H.J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology 144, 51-63.

Mohanraj, V.J. and Chen, Y. (2006). Nanoparticles - A review. Tropical Journal of Pharmaceutical Research 5, 561-573.

Nidhin, M., Indumathy, R., Sreeram, K.J. and Naur, B.U. (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Material Science 31, 93-96.

Olivas-Armendáriz, I., García-Casillas, P., Martel-Estrada, A., Martínez-Sanchez, R., Martínez-Villafañe, A. and Martínez-Perez, C.A. (2009). Preparation and characterization of chitosan/carbon nanotubes composites. Revista Mexicana de Ingeniería Química 8, 205-211.

Pulido, A. and Beristain, C.I. (2010). Spray dried encapsulation of ascorbic acid using chitosan as wall material. Revista Mexicana de Ingeniería Química 9, 189-195.

Raafat, D. and Sahl, H.G. (2009). Chitosan and its antimicrobial potential - a critical literature survey. Microbial Biotechnology 2, 186-201.

Shay, K.P., Moreau, R.F., Smith, E.J., Smith, A.R. and Hagen, T.M. (2009). Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochimica et Biophysica Acta 1790, 1149-1160.

Tiyaboonchai, W. (2003). Chitosan nanoparticles: a promising system for drug delivery. Naresuan University Journal 11, 51-66.

Weerakody, R., Fagan, P. and Kosaraju, S.L. (2008). Chitosan microspheres for encapsulation of α-lipoic acid. International Journal of Pharmaceutics 357, 213-218.
Published
2020-04-07
How to Cite
Velasco-Rodríguez, V., Cornejo-Mazón, M., Flores-Flores, J., Gutiérrez-López, G., & Hernández-Sánchez, H. (2020). PREPARATION AND PROPERTIES OF ALPHA-LIPOIC ACID-LOADED CHITOSAN NANOPARTICLES. Revista Mexicana De Ingeniería Química, 11(1), 155-161. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1536

Most read articles by the same author(s)