• P. Téllez-Mora Instituto Tecnológico de Tlajomulco, Jalisco
  • F. A. Peraza-Luna Instituto Tecnológico de Tizimín
  • A. Feria-Velasco Universidad de Guadalajara
  • I. Andrade-González Instituto Tecnológico de Tlajomulco, Jalisco
Keywords: optimization, Saccharomyces, Agave (tequilana), fermentation, macronutrients, tequila


The objective of this work was to optimize sugar concentrations, nitrogen and phosphorus in the medium, in order to increase the efficiency production, establishing the influence of these macronutrients in the flavor compounds listed in the Mexican legislation (NOM-006-SCFI-2005). It was used two strains of Saccharomyces yeasts and two types of must: 100% Agave and mixed Agave (Agave plus sucrose). At first it was used a factorial design (24−1). Control variables: sugar concentration, nitrogen and phosphorus, and temperature. Response variables: fermentation efficiency and concentrations of the compounds listed in the NOM. The objective function was determined by minimum squares for each response variable with its restrictions. For the efficiency of 94.58% (with a desirable function of 0.891312), the program suggested, mixed Agave (Agave and sucrose), Saccharomyces THL 110; 8Bx; 0.797979 g / l N; 0.376875 g / l P, and at 40 C.


Albers, E., Larsson, C., Lidén, G., Niklasson, C. y Gustafsson, L. (1996). Influence of the nitrogen source on Saccharomyces cerevisiae. Anaerobic growth and product formation. Applied and Environmental Microbiology 62, 3187 - 3195.

Arellano, M., Pelayo, C., Ramírez, J. y Rodríguez, I. (2008). Characterization of kinetic parameters and the formation of volatile compounds during the tequila fermentation by wild yeast isolated from Agave juice. Journal of Industrial Microbiology Biotechnology 35, 835-841.

Arrizón, J., Fiorce, C., Acosta, G., Romano, P. y Gschaedler, A. (2006). Fermentation behaviour and volatile compound production by Agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations. Antonie Van Leeuwenhoek 89, 181-189.

Arrizón, J. y Gschaedler, A. (2002). Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process. Canadian Journal of Microbiology 48, 965-970.

Arrizón, J. y Gschaedler, A. (2007). Effects of the addition of different nitrogen sources in the tequila fermentation process at high sugar concentration. Journal of Applied Microbiology 102, 1123-1131.

Ballesteros, I., Ballesteros, M., Cabañas, A., Carrasco, J., Martín, M., Negro, J., Saez, F. y Saez, R. (1991). Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Applied Biochemistry and Biotechnology 28, 307-332.

Bely, M., Rinaldi, A. y Doubourdieu, D. (2003). Influence on assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal of Bioscience and Bioengineering 96, 507-512.

Blateyron, L. y Sablayrolles J.M. (2001). Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. Journal of Bioscience and Bioengineering 91, 184-189.

Bohlscheid, J.C., Fellman, J.K., Wang, X.D., Ansen, D. y Edwards, C.G. (2007). The influence of nitrogen and biotin interactions in the performance of Saccharomyces in alcoholic fermentations. Journal of Applied Microbiology 102, 390-400.

Da Porto, C. (2002). Volatile composition of “grappa low wines” using different methods and conditions of storage on an industrial scale. International Journal of Food Science and Technology 37, 395-402.

Escalona, H.B., Villanueva, S.J., López, J.E., González, R.M., Martín del Campo, T., Estarrón, M., Cosío, R. y Cantor, E. (2004). Calidad del tequila como producto terminado: normatividad. Composición volátil y la imagen sensorial. En: Ciencia y Tecnología del Tequila, avances y perspectivas (CIATEJ ed.) Pp. 174- 256.

Flores, N., Martínez, R.A., Fernández, E., Gallegos, J.L., Díaz, M.I. y Vázquez S.R.(2005). Características fisicoquímicas en vinos tintos: Método tradicional y maceración carbónica empleando dos cepas de levadura Saccharomyces cerevisiae. Revista Mexicana de Ingeniería Química 4, 289-297.

Fraile, P., Garrido, J. y Ancín, C. (2000). Influence of a Saccharomyces cerevisiae selected strain in the volatile composition of rose wines. Evolution during fermentation. Journal of Agricultural of Food Chemistry 48, 1789-1798.

Gschaedler, A., Ramírez, J., Díaz, D.M., Herrera, J.E., Arellano, M., Arrizón, J. y Pinal, L. (2004). Fermentación, etapa clave en la elaboración del tequila, En Ciencia y Tecnología del Tequila, avances y perspectivas (CIATEJ ed.) Pp. 63- 120.

Inei, G., Velasco, H.A., Gutiérrez, G.F. y Hernández, H. (2009). Statistical aproach to optimization of etanol fermentation by Saccharomyces cerevisiae in the presence of VALFOR R 100 zeolite NAA. Revista Mexicana de Ingeniería Química 8, 265-270.

Jones, R.P., Pamment, N. y Greenfield, P.F. (1981). Alcohol fermentation by yeast - the effect of environmental and other variables. Process Biochemistry 16, 42-49.

Kar, R. y Laxmikanthrao, V. (1985). Ethanolic fermentation by thermotolerant yeast. Journal of Chemical Technology and Biotechnology 35B, 235-239.

Kelsall, D.R. y Lyons, P.T. (2003). Practical management of yeast: conversion of sugars to ethanol. En: The Alcohol Textbook 4th Edition. (Jackes, K.A., Lyons, P.T. y Kelsall, D.R ed.). Pp. 121-133.

Kolothumannil, C.T. e Ingledew, M. (1990). Fuel alcohol production: Effect of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Applied and Environmental Microbiology 5, 2046-2050.

Lachance, M.A. (1995). Yeast communities in a natural tequila fermentation. Antonie van Leeuwenhoek 68, 151-160.

Melero, R. (1992). Fermentación controlada y selección de levaduras vínicas. Revista Española de Ciencia y Tecnología de Alimentos 32, 371 - 379.

Mills, D.A., Johannsen, E.A. y Cocolin, L. (2002). Yeast diversity and persistence in botrytis affected wine fermentations. Applied and Environmental Microbiology 68, 4884 - 4893.

Molina, J.A., Botello, J.E., Estrada, A., Navarrete, J.L, Jiménez, H., Cárdenas, M. y Rico, R. (2007). Compuestos volatiles en el mezcal. Revista Mexicana de Ingeniería Química 6, 41- 50.

Morata, A., Gómez, M.C., Colombo, B. y Suarez J. A. (2003). Piruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with Vitisin A and B, formation in red wines. Journal of Agricultural and Food Chemistry 51, 7402- 7409.

Moreira, N., Mendes, F., Pereira, O., De Pinho, P.G., Hogg, T. y Vasconcelos, I. (2002). Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts. Analytica Chimica Acta 458, 157-167.

Munoz, E. e Ingledew, W. M. (1989). Effect of yeast hulls on stuck and sluggish wine fermentations: Importance of the lipid component. Applied and Environmental Microbiology 55, 1560-1564.

Norma Mexicana, NMX-V-013-NORMEX - 2005. Bebidas alcohólicas. Determinación del contenido alcohólico (% alcohol en volumen a 293 K, 20◦C). Método de ensayo (prueba), 2005.

Norma Mexicana, NMX-V-005 NORMEX-2005. Bebidas alcohólicas. Determinación de aldehídos, esteres, metanol y alcoholes superiores. Método de ensayo (prueba), 2005.

Norma Mexicana. NMX-V-006 NORMEX2005. Determinación de azúcares reductores directos y totales (Inulina, glucosa, fructosa y sacarosa) método por cromatografía de líquidos de alta resolución. En: Bebidas alcohólicas. Determinación de Azúcares Reductores Directos y Totales. Método de ensayo (prueba), 2005.

Norma Oficial Mexicana, (NOM) 006-SCFI-2005. Bebidas Alcohólicas-Tequila especificaciones. Secofi. Diario Oficial de la Federación 6 de enero de 2006.

Pinal, L., Cedeño, M., Gutiérrez, H. y Álvarez, J. (1997). Fermentation parameters influencing higher alcohol production in the tequila process. Biotechnology Letters 19, 45-47.

Prado, R.R. (2004). Destilación. En Ciencia y Tecnología del Tequila, avances y perspectivas (CIATEJ Ed.), 123-169.

Rainieri, S. y Pretorius I.S. (2000). Selection and improvement of wine yeasts. Annals of Microbiology 50, 15-31.

Salmon, J. M. (1989). Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Applied and Environmental Microbiology 5, 953-958.

Shuang, C. y Yan, X. (2010). The influence of yeast strain on the volatile flavour compounds of Chinese rice wine. Journal of the Institute of Brewing 116, 190-196.

Torija, M.J., Beltran, G, Novo, M., Poblet, M., ´ Rozes, N., Guillam ` on J.M. y Mas A. (2003). ´ Effect of the nitrogen source on the fatty acid composition of Saccharomyces cerevisiae, Food Microbiology 20, 255-258.

Torrea, G.D. y Ancín, A. C. (2002).Nitrogen metabolism in Chardonnay musts inoculated with killer strains of Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 94, 15-22.

Walker, G.M. (2000). Yeast cytology. En: Yeast Physiology and Biotechnology. (John Wiley & Sons) Cap. 2, pp. 11-42.

Wang, X. D., Bohlscheid, J.C. y Edwards, C.G. (2003). Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. Journal of Applied Microbiology 94, 349-359.
How to Cite
Téllez-Mora, P., Peraza-Luna, F. A., Feria-Velasco, A., & Andrade-González, I. (2020). OPTIMIZATION OF FERMENTATION PROCESS FOR TEQUILA PRODUCTION USING RESPONSE SURFACE METHODOLOGY (RSM). Revista Mexicana De Ingeniería Química, 11(1), 163-176. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1537
Process engineering