OPTICAL, MICROSTRUCTURAL, FUNCTIONAL AND NANOMECHANICAL PROPERTIES OF Aloe vera GEL/GELLAN GUM EDIBLE FILMS

  • J.S. Alvarado-González Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • J.J. Chanona-Pérez Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • J. S. Welti-Chanes División de Biotecnología y Alimentos, Instituto Tecnológico y de Estudios Superiores de Monterrey
  • G. Calderón-Domínguez Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • I. Arzate-Vázquez Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional
  • S. U. Pacheco-Alcalá Laboratorio de Microscopía de Ultra Alta Resolución, Instituto Mexicano del Petróleo
  • V. Garibay-Febles Laboratorio de Microscopía de Ultra Alta Resolución, Instituto Mexicano del Petróleo
  • G. F. Gutiérrez-López Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
Keywords: edible films, Aloe vera, gellan gum

Abstract

Edible films of Aloe vera gel (Al), gellan gum (Ge) and their blend (AlGe) were prepared by the casting method and dried in a conventional oven. Optical, microstructural, functional and nanomechanical properties were evaluated. The films elaborated had adequate optical properties to be used in foods; AlGe showed higher values of transparency (6.5), total color difference (5.4) and extinction coefficient (0.052) than the Al and Ge; however, intermediate gloss (34.4) and refractive index (1.53) values were obtained for AlGe, maybe promoted by chemical interactions between Aloe vera and gellan gum. Microscopy and image analysis techniques were used to evaluate the microstructure of pure and blend films; the interactions due to the crosslinked among the polysaccharides of the blend were elucidated by atomic force microscopy. Water sorption capacity (-0.42 %/min) and water vapor permeability (21.3 g·mm/d·m2 ·kPa) of AlGe were enhanced as compared to Al and Ge; besides the hardness (2.3 MPa) and elastic modulus (0.1 GPa) of the blend at nanometric level was reinforced with the gellan gum addition. The present research could be helpful to understand the blending effect on the property-structure-functionality relationships of edible films with potential use in food industry.

References

Abugoch, L.E., Tapia, C., Villamán, M.C., Yazdani-Pedram, M. and Díaz-Dosque, M. (2011). Characterization of quinoa protein-chitosan blend edible films. Food Hydrocolloids 25, 879- 886.

Adachi, N. (2002). Dehydrated gel composition from hydrated isolated acetylated gellan gum. Patent: US006458404B1. United States Patent.

Alves, P.M.A., Carvalho, R.A., Moraes, I.C.F., Luciano, C.G., Bittante, A.M.Q.B. and Sobral, P.J.A. (2011). Development of films based on blends of gelatin and poly(vinyl alcohol) cross linked with glutaraldehyde. Food Hydrocolloids Volume 25, 1751-1757.

Arzate-Vazquez, I. (2011). Aplicación del análisis de textura de imágenes para la caracterización cuantitativa de superficies biológicas. Tesis de doctorado en alimentos. Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional.

Arzate-Vázquez, I., Chanona-Pérez, J.J., Calderón-Domínguez, G., Terres-Rojas, E., Garibay-Febles, V., Martínez-Rivas, A. and Gutiérrez-López, G.F. (2012). Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydrate Polymers 87, 289-299.

ASTM. (1989). Standard test methods for water vapor transmission of materials E 96-80. In Annual book of ASTM standards (pp. 745-754). Philadelphia, PA: American Society for Testing and Materials.

ASTM. (1999). Standard test method for specular gloss. In Designation (D523). Annual book of ASTM standards, Vol. 06.01. Philadelphia, PA: American Society for Testing and Materials.

ASTM. (2000c). Standard Test Method for Transparency of Plastic Sheeting. Designation D1746-97, vol. 8.01. American Society for Testing and Materials, Philadelphia, PA.

Ayranci, E. and Tunc, S. (2003). A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chemistry 80, 423-431.

Banerjee, S. and Bhattacharya, S. (2011). Compressive texture attributes, opacity and syneresis of gels prepared from gellan, agar and their mixtures. Journal of Food Engineering 102, 287-292.

Barkalow, D.G., Chapdelaine, A.H. and Dzija, M.R. (2002). Pullulan free edible film compositions and methods of making the same. Patent: US 20020131990A1. United States Patent.

Bergo, P., Sobral, P.J.A. and Prison, J.M. (2010). Effect of glycerol on physical properties of cassava starch films. Journal of Food Processing and Preservation 34, 401-410.

Bósquez-Molina, E., Guerrero-Legarreta, I. and Vernon-Carter, E.J. (2003). Moisture barrier properties and morphology of mesquite gumcandelilla wax based edible emulsion coatings. Food Research International 36, 885-893.

Carneiro-da-Cunha, M.G., Cerqueira, M.A., Souza, B.W.S., Carvalho, S., Quintas, M.A.C., Teixeira, J.A. and Vicente, A.A. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers 82, 153-159.

Castillo, S., Navarro, D., Zapata, P.J., Guillen, F., ´ Valero, D., Serrano, M. and Mart´ınez-Romero, D. (2010) Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biology and Technology 57, 183- 188.

Caykara, T. (2004). Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-co-maleic acid) polyelectrolyte hydrogels. Journal of Applied Polymer Science 92, 763-769.

Caykara, T. and Turan, E. (2006). Effect of the amount and type of the crosslinker on the swelling behavior of temperature-sensitive poly(N-tert-butylacrylamide-co-acrylamide) hydrogels. Colloid and Polymer Science 284, 1038-1048.

Chen, C.-P., Wang, B.-J. and Weng, Y.-M. (2010). Physiochemical and antimicrobial properties of edible aloe/gelatin composite films. International Journal of Food Science & Technology 45, 1541-1544.

Del-Valle, V., Hernández-Muñoz, P., Guarda, A. and Galotto, M.J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry 91, 751-756.

Dentini, M., Desideri, P., Crescenzi, V., Yuguchi, Y., Urakawa, H. and Kajiwara, K. (2001). Synthesis and physicochemical characterization of gellan gels. Macromolecules 34, 1449-1453.

Domínguez-Fernández, R.N., Arzate-Vázquez, I., Chanona-Perez, J.J, Welti-Chanes, J.S., Alvarado-Gonzalez, J.S., Calderón-Domínguez, G., Garibay-Febles, V. and Gutiérrez-López, G.F. (2012). El gel de Aloe vera: Estructura, composición química, procesamiento, actividad biológica e importancia en la industria farmacéutica y alimentaria. Revista Mexicana de Ingeniería Química 11, 23-43.

Fabra, M.J., Hambleton, A., Talens, P., Debeaufort, F. and Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids 25, 1441-1447.

Femenia, A., García-Pascual, P., Simal, S. and Rosello, C. (2003). Effects of heat treatment and dehydration on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydrate Polymers 51, 397-405.

Fernández-Pan, I., Ziani, K., Pedroza-Islas, R. and Maté, J.I. (2010). Effect of drying conditions on the mechanical and barrier properties of films based on chitosan. Drying Technology 28, 1350- 1358.

Fischer-Cripps, A.C. (2006). Critical review of analysis and interpretation of nanoindentation test data. Surface & Coating Technology 200, 4153-4165.

Funami,T., Noda, S., Nakauma, M., Ishihara, S., Takahashi, R., Al-Assaf, S., Ikeda, S., Nishinari, K. and Phillips, G.O. (2008) Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behavior in aqueous systems in the presence or absence of various cations. Journal of Agricultural and Food Chemistry 56, 8609- 8618.

Gennadios, A., Weller, C.L. and Gooding, C.H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering 21, 395-409.

Ghasemlou, M., Khodaiyan, F. and Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers 84, 477-483.

Hans, J.H. and Floros, J.D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting 13, 287-98.

Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC 3, 610-621.

Ikoni, O. and Obiageli, N. (2010). Film coating potential of okra gum using paracetamol tablets as a model drug. Asian Journal of Pharmaceutics 4, 130-134.

Illiger, S.R., Fadnis, C., Demappa, T., Jayaraju, J. and Keshavayya, J. (2009). Miscibility studies of HPMC/PEG blends in water by viscosity, density, refractive index and ultrasonic velocity method. Carbohydrate Polymers 75, 484-488.

Jones, J.B. (2010). Physical characteristics and metal binding applications of chitosan films. Master’s Thesis. University of Tennessee. http://trace.tennessee.edu/utk gradthes/722

Jung, C.H. and Kim, Y.P. (2008). Theoretical study on the change of the particle extinction coefficient during the aerosol dynamic processes. Journal of Aerosol Science 39, 904- 916.

Jutaporn, C.T., Suphitchaya, C. and Thawien, W. (2011). Antimicrobial activity and characteristics of edible films incorporated with Phayom wood (Shorea tolura) extract. International Food Research Journal 18, 39-54.

Kechichian, V., Ditchfield, C., Veiga-Santos, P. and Tadini, C.C. (2010). Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT Food Science and Technology 43, 1088-1094.

Krumova, M., Flores, A., Balta Calleja, F.J. and ´ Fakirov, S. (2002). Elastic properties of oriented polymers, blends and reinforced composites using the microindentation technique. Colloid & Polymer Science 280, 591-598.

Lau, M.H., Tang, J. and Paulson, A.T. (2001). Effect of polymer ratio and calcium concentration on gelation properties of gellan/gelatin mixed gels. Food Research International 34, 879-886.

Lavorgna, M., Piscitelli, F., Mangiacapra, P. and Buonocore, G.G. (2010). Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydrate Polymers 82, 291-298.

Lee, K.Y., Shim, J. and Lee, H.G. (2004) Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers 56, 251-254.

Lee, J.-W., Son, S.-M. and Hong, S.-I. (2008). Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application. Journal of Food Engineering 86, 484-493.

Liu, Z., Ge, X., Lu, Y., Dong, S., Zhao, Y. and Zeng, M. (2012). Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocolloids 26, 311-317.

Liu, J.-G., Nakamura, Y., Shibasaki, Y., Ando, S. and Ueda, M. (2007). High refractive index polyimides derived from 2,7-bis(4- aminophenylenesulfanyl)thianthrene and aromatic dianhydrides. Macromolecules 40, 4614-4620.

Lucca, D.A., Herrmann, K. and Klopfstein, M.J. (2010). Nanoindentation: Measuring methods and applications. CIRP Annals - Manufacturing Technology 59, 803-819.

Maria, T.M.C., De Carvalho, R.A., Sobral, P.J.A., Habitante, A.M.B.Q. and Solorza-Feria, J. (2008). The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. Journal of Food Engineering 87, 191- 199.

Mendoza, F., Dejmek, P. and Aguilera, J. M. (2007). Colour and image texture analysis in classification of commercial potato chips. Food Research International 40, 1146-1154.

Meraz-Torres, L.S., Quintanilla-Carvajal, M.X., Hernández-Sánchez, H., Téllez-Medina, D.I., Alamilla-Beltrán, L. and Gutierrez-López, G.F. (2011). Assessment of the kinetics of contact angle during the wetting of maltodextrin agglomerates. Revista Mexicana de Ingenería Química 10, 273-279.

Mikkonen K.S., Heikkilä M.I., Helen H., Hyvönen L. and Tenkanen M. (2010). Spruce galactoglucomannan films show promising barrier properties. Carbohydrate Polymers 79, 1107-1112.

Miranda, M., Vega-Gávez, A., García, P., Di Scalad, K., Shi, J., Xue, S. and Uribe, E. (2010). Effect of temperature on structural properties of Aloe vera (Aloe barbadensis Miller) gel and Weibull distribution for modelling drying process. Food and Bioproducts Processing 88, 138-144.

Miyoshi, E. (2007). Different effects of monosaccharides and disaccharides on the solgel transition in gellan gum aqueous solutions. Development and Environment 7, 31-43.

Monedero, F.M., Fabra, M.J., Talens, P. and Chiralt, A. (2008). Effect of oleic acid-beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based films. Journal of Food Engineering 91, 509- 515.

Montgomery, D. C. (1991). Design and Analysis of Experiments. Wiley & Sons, Inc. USA.

Moreira, L.R.S. and Filho, E.X.F. (2008). An overview of mannan structure and mannandegrading enzyme systems. Applied Microbiology Biotechnology 79,165-178.

Mu, C., Guo, J., Li, X., Lin, W. and Li, D. (2012). Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids 27, 22- 29.

Murray, C.A. and Dutcher, J.R. (2006). Effect of changes in relative humidity and temperature on ultrathin chitosan films. Biomacromolecules 7, 3460-3465.

Nadarajah, K. (2005). Development and characterization of antimicrobial edible films from crawfish chitosan. Louisiana State University, Electronic Thesis & Dissertation Collection. URN etd-04142005-152845.

Nosal, W.H., Thompson, D.W., Yan, L., Sarkar, S., Subramanian, A. and Woollam, J.A. (2005). UV-vis-infrared optical and AFM study of spincast chitosan films. Colloids and Surfaces B: Biointerfaces 43, 131-137.

Oakenfull, D.G. (1991). The chemistry of highmethoxyl pectins. In R.H. Walter (Ed.) The chemistry and technology of pectins (pp. 87- 108). New-York: Academic Press.

Olivas, G.I. and Barbosa-Cánovas, G.V. (2008). Alginate-calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT- Food Science and Technology 41, 359- 366.

Oliver, W.C. and Pharr, G.M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19, 3-20.

Padmakumari. P., Anupama, C., Abbulu, K.and Pratyusha, A.P. (2011). Evaluation of fruit calyces mucilage of Hibiscus Sabdariffa Linn as tablet binder. International Journal of Research in Pharmaceutical and Biomedical Sciences 2, 516-519.

Park, H.J., Bunn, J.M., Weller, C.L., Vergano, P.J. and Testin, R.F. (1994). Water vapor permeability and mechanical properties of grain protein-based films as affected by mixtures of polyethylene glycol and glycerin plasticizers. Transactions of the American Society of Agricultural Engineers 37, 1281-1285.

Piña, Z.H.J. and Morales, E.A. (2010). Aloe en Venezuela: de la cadena de valor al distrito industrial. Problemas del Desarrollo: Revista Latinoamericana de Economía 41, 187-208.

Porter, S.C. and Felton, L.A. (2010). Techniques to assess film coatings and evaluate film-coated products. Drug Development and Industrial Pharmacy 36, 128-142.

Pranoto, Y., Lee, C.M. and Park, H.J. (2007). Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT - Food Science and Technology 40, 766-774.

Quintanilla-Carvajal, M.X., Meraz-Torres, L.S., Alamilla-Beltrán, L., Chanona-Pérez, J.J., Terres-Rojas, E., Hernández-Sánchez, H., Jiménez-Aparicio, A.R. and Gutiérrez-López, G.F. (2011). Morphometric characterization of spray-dried microcapsules before and after α-tocopherol extraction. Revista Mexicana de Ingeniería Química 10, 301-312.

Ramachandra, C.T. and Srinivasa Rao, P. (2008). Processing of Aloe vera leaf gel: A review. American Journal of Agricultural and Biological Sciences 3, 502-510.

Ramachandra, C.T. and Srinivasa Rao, P. (2009). Modelling and optimization of drying variables in desiccant air drying of Aloe vera (Aloe barbadensis Miller) gel. ASABE 2009 Reno, Nevada, 096498.

Rodríguez-Gonzalez, V.M., A. Femenia, A., Minjares-Fuentes, R. and González-Laredo, F. R. (2012) Functional properties of pasteurized samples of Aloe barbadensis Miller: Optimization using response surface methodology. LWT - Food Science and Technology 47, 225-232

Rojas-Grau, M.A., Tapia, M.S. and Mart ¨ ´ın-Belloso, O. (2008). Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT-Food Science and Technology 41, 139-147.

Romero-Bastida, C.A., Zamudio-Flores P.B. and Bello-Perez L.A. (2011). Antimicrobianos en películas de almidón oxidado de plátano: efecto sobre la actividad antibacteriana, microestructura, propiedades mecánicas y de barrera. Revista Mexicana de Ingeniería Química 10, 445-453.

Saibuatong, O. and Phisalaphong, M. (2010). Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydrate Polymers 79, 455-460.

Sittikijyothin, W., Torres, D. and Goncalves, M.P. (2005). Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohydrate Polymers 59, 339-350.

Takahashi, R., Tokunou, H., Kubota, K., Ogawa, E., Oida, T., Kawase, T. and Nishinari, K. (2004). Solution properties of gellan gum: change in chain stiffness between single- and double-stranded chains. Biomacromolecules 5, 516-523.

Tang, J., Tung, M.A. and Zeng, Y. (1998). Characterization of gellan gels using stress relaxation. Journal of Food Engineering 38, 279-295.

Tapia, M.S., Rojas-Graü, M.A., Carmona, A., Rodríguez, F.J., Soliva-Fortuny, R. and Martin-Belloso, O. (2008). Use of alginate- and gellanbased coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids 22, 1493-1503.

Vachon, C., D’aprano, G., Lacroix, M. and Letendre, M. (2003). Effect of edible coating process and irradiation treatment of strawberry fragaria spp. on storage-keeping quality. Journal of Food Science 68, 608-612.

Villagómez-Zavala, D.L., Gómez-Corona, C., San Martín Martínez, E., Perez-Orozco, J.P., Vernon-Carter, E.J. and Pedroza-Islas, R. (2008). Comparative study of the mechanical properties of edible films made from single and blended hydrophilic biopolymer matrices. Revista Mexicana de Ingeniería Química 7, 263-273.

Villalobos, R., Chanona, J., Hernandez, P., Gutiérrez, G. and Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methycellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids 19, 53-61.

Wang, S.-F., Shen, L., Zhang, W.-D. and Tong, Y.J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6, 3067-3072.

Wang, Y., Li, D., Wang, L., Yang, L. and Ózkan, N. (2011) Dynamic mechanical properties of flaxseed gum based edible films. Carbohydrate Polymers 86, 499-504.

Ward, G. and Nussinovitch, A. (1997). Characterizing the gloss properties of hydrocolloid films. Food Hydrocolloids 11, 357-365.

Wei, P.-J. and Lin, J.-F. (2005). A new method developed to evaluate both the hardness and elastic modulus of a coating-substrate system. Surface & Coatings Technology 200, 2489- 2496.

Yang, L. (1997). Physicochemical properties of biodegradable/edible films made with gellan gum. Technical University of Nova Scotia, Electronic Thesis & Dissertation Collection. Id.: 50989058

Yang, X., Beyenal, H., Harkin, G., and Lewandowski, Z. (2000). Quantifying biofilm structure using image analysis. Journal of Microbiological Methods 39, 109-119.

Yang, H., Wang, Y., Lai, S., An, H., Li, Y. and Chen, F. (2007). Application of atomic force microscopy as a nanotechnology tool in food science. Journal of Food Science 72, R65-R75.

Yang, L., Paulson, A.T. and Nickerson, M.T. (2010). Mechanical and physical properties of calcium-treated gellan films. Food Research International 43, 1439-1443.

Yener, F.Y.G., Korel, F. and Yemenicioglu, A. (2009). Antimicrobial activity of lactoperoxidase system incorporated into cross-linked alginate films. Journal of Food Science 74, M73-M79.

Zahedi, Y., Ghanbarzadeh, B. and Sedaghat, N. (2010). Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. Journal of Food Engineering 100, 102-108.

Zhang, S. and Zhang, X. (2012). Toughness evaluation of hard coatings and thin films: A critical review. Thin Solid Films 520, 2375- 2389.
Published
2020-04-08
How to Cite
Alvarado-González, J., Chanona-Pérez, J., Welti-Chanes, J. S., Calderón-Domínguez, G., Arzate-Vázquez, I., Pacheco-Alcalá, S. U., Garibay-Febles, V., & Gutiérrez-López, G. F. (2020). OPTICAL, MICROSTRUCTURAL, FUNCTIONAL AND NANOMECHANICAL PROPERTIES OF Aloe vera GEL/GELLAN GUM EDIBLE FILMS. Revista Mexicana De Ingeniería Química, 11(2), 193-210. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1542
Section
Food Engineering

Most read articles by the same author(s)