EFFECT OF AERATION ON THE FERMENTATIVE ACTIVITY OF Saccharomyces cerevisiae CULTURED IN APPLE JUICE

  • W. Estela-Escalante Department of Fermentation Chemistry and Bioengineering, Faculty of Food and Biochemical Engineering. Institute of Chemical Technology Prague
  • M. Rychtera Department of Fermentation Chemistry and Bioengineering, Faculty of Food and Biochemical Engineering. Institute of Chemical Technology Prague
  • K. Melzoch Department of Fermentation Chemistry and Bioengineering, Faculty of Food and Biochemical Engineering. Institute of Chemical Technology Prague
  • B. Hatta-Sakoda Facultad de Ingeniería de Industrias Alimentarias, Universidad Nacional Agraria La Molina
Keywords: Saccharomyces cerevisiae, alcoholic fermentation, higher alcohols, ethyl acetate, batch cultivation

Abstract

The influence of aeration on the fermentative activity of Saccharomyces cerevisiaeRIVE V 15-1-416 was studied in order to evaluate the synthesis of fermentation by-products. To achieve this, the strain was cultured in Erlenmeyer flasks and bioreactor containing sterilized and aroma removed apple juice. The chemical compounds produced during fermentations in shaken (200 min−1) and static (without agitation) flasks and bioreactor, all in batch mode, were determined by GC and HPLC. The results showed that agitation of the culture medium dimishes production of total higher alcohols (316.0±27.5mg/L) compared to static cultivation (557.8±28.1mg/L) and enhances slightly ethyl acetate production (75.0±6.5mg/L), whereas on the contrary, the production of acetic acid and glycerol (266.0±8.0mg/L and 2.9±0.2g/L) were higher compared to shaken cultivation (51.0±4.5mg/L and 0.11±0.05g/L) respectively. Batch cultivations carried out in bioreactor with constant air flow of 0.28vvm reported a specific growth rate (µ) of 0.13h−1 and maximum concentration of ethanol of 42.3g/L during aerobic fermentation. Aeration promotes cell growth, diminishes ethanol yield and, provokes acetic acid uptake and succinic acid synthesis whereas malic acid and ethanol were consumed after sugar depletion. The best results in terms of sensory acceptability of the fermented beverage were obtained when cultivated statically. Aeration control during fermentation with this strain can be used to control the synthesis of chemical compounds of sensory importance.

References

Albers, E., Liden, G., Larsson, C. and Gustafsson, L. (1998). Anaerobic redox balance and nitrogen metabolism in Saccharomyces cerevisiae. Recent Research Development in Microbiol 2, 253-279.

Amerine, A.M., Berg, H.V., Kunkee, R.E., Ough, C.S., Singleton, V.L. and Webb, A.D. (1980). The Technology of Winemaking, (4th edn). AVI Technical Books Inc., Westport, Connecticut, USA.

Andreasen, A.A., Stier, T.J.B. (1953). Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. Journal of Cellular and Comparative Physiology 41, 23- 6.

Arikawa, Y., Kuroyanagi, T., Shimofqaka, M., Muratsubaki, H., Enomot, K., Kodaira, R. and Okazak, M. (1999). Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 87, 28-36.

Barford, J.P. (1981). A mathematical model for the aerobic growth of Saccharomyces cerevisiae with a saturated respiratory capacity. Biotechnology and Bioengineering 23, 1735- 1762.

Barker, R.L., Irwin, A.J. and Murray, C.R. (1992). The relationship bewteen fermentation variables and flavour volatiles by direct gas chromatographic injection of beer. Master Brewers Association of the Americas Technical Quarterly 29, 11-17.

Beeftink, H.H., van der Heijden R.T.J.M. and Heijnen, J.J. (1990). Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption. FEMS Microbiology Letters 73, 203-209.

Beudeker, R.F., van Dam, H.W., van der Plaat, J.B. and Vellenga, K. (1990). Developments in bakers’ yeast production. In: Yeast Biotechnology and Biocatalysis, (H. Verachtert and R. De Mot, eds.), Pp. 103-46. Marcel Dekker, New York, USA.

Boulton, R.B., Singleton, V.L., Bisson, L.F. and Kunkee, R.E. (1995). Principles and Practices of Winemaking. Chapman and Hall, New York, USA.

Burke, P.V., Raitt, D.C., Allen, L.A., Kellogg, E.A. and Poyton, R.O. (1997). Effects of oxygen concentration on the expression of cytochrome c and cytochrome c oxidase genes in yeast. Journal of Biological Chemistry 272, 14705- 14712.

Cabranes, C., Moreno, J. and Mangas, J.J. (1998). Cider production with immobilized Leuconostoc oenos. Journal of the Institute of Brewing 4, 127-130.

Carlson, M. (1999). Glucose repression in yeast. Current Opinion in Microbiology 2, 202-207.

Casal, M., Cardoso, H. and Leao, C. (1996). Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142, 1385-1390.

D’Amore, T., Russell, I. and Stewart, G.G. (1989). Sugar utilization by yeast during fermentation. Journal of IndustriaI Microbiology 4, 315-324.

De Deken, R.H. (1966). The Crabtree effect: A regulatory system in yeast. Journal of General Microbiology 44, 149-156.

Dequin, S., Salmon, J.M. and Nguyen, H.V. (2003). Wine yeasts. In: Yeasts in Food-Beneficial and Detrimental Aspects, (T. Boekhout and V. Robert, eds.), Pp. 389-412. Behr’s Verlag, Hamburg, Germany.

Dickinson, J.R. and Norte, V. (1993). A study of branched-chain amino acids aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Letters 326, 29-32.

Dickinson, J.R., Lanterman, M.M., Danner, D.J., Pearson, B.M., Sanz, P., Harrison, S.J. and Hewlins, M.J.E. (1997). A 13C Nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. Journal of Biological Chemistry 272, 26871-26878.

Dickinson, J.R., Harrison, S.J. and Hewlins, M.J.E. (1998). An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. Journal of Biological Chemistry 273, 25751-25756.

Dickinson, J.R., Harrison, S.J., Dickinson, J.A. and Hewlins, M.J.E. (2000). An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae. Journal of Biological Chemistry 275, 10937-10942.

Downing, D.L. (1988). Processed Apple Products, (L.D. Donald, ed.). Van Nostrand Reinhold Pub., New York, USA.

El-Nemra, S.E., Ismaila, I.A and Askar, A. (1988). Aroma changes in mango juice during processing and storage. Food Chemistry 30, 269-275.

Fernandez, E., Moreno, F. and Rodicio, R. (1992). The ICL1 gene from Saccharomyces cerevisiae. European Journal of Biochemistry 204, 983- 990.

Fiaux, J., Cakar, Z.P., Sonderegger, M., Wuthrich, K., Szyperski, T. and Sauer, U. (2003). Metabolic flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryotic Cell 2, 170-180.

Fiechter, A., Fuhrmann, G.F., Kappeli, O. (1981). Regulation of glucose metabolism in growing yeast cells. Advances in Microbial Physiology 22, 123-183.

Fleet, G.H. and Heard, G.M. (1993). Yeasts-growth during fermentation. In: Wine Microbiology and Biotechnology, (G.H. Fleet, ed.), Pp. 27-54. Harwood Academic Publishers, Switzerland.

Franzen, C.J. (2003). Metabolic flux analysis of RQcontrolled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20, 117-132.

Fujii, T., Yoshimoto, H. and Tamai, Y. (1996). Acetate ester production by Saccharomyces cerevisiae lacking the ATFl gene encoding the alcohol acetyltransferase. Journal of Fermentation and Bioengineering 81, 538-542.

Furukawa, K., Heinzle, E. and Dunn, I.J. (1983). Influence of oxygen on the growth of Saccharomyces cerevisiae in continuous culture. Biotechnology and Bioengineering 25, 2293 - 2317.

Gancedo, J.M. (1998). Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews 62, 334-361.

Gombert, A.K., dos Santos, M.M., Christensen, B., Christensen, B. and Nielsen, J. (2001). Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. Journal of Bacteriology 183, 1441- 1451.

Gupta, A. and Rao, G.A. (2003). Study of oxygen transfer in shake flasks using a noninvasive oxygen sensor. Biotechnology and Bioengineering 84, 351-358.

Gustin, M.C., Albertyn, J., Alexander, M. and Davenport, K. (1998). MAP Kinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Review 62, 1264-1300.

Haarasilta, S. and Oura, E. (1975). On the activity and regulation of anaplerotic and gluconengenetic enzymes during the growth process of baker’s yeast. European Journal of Biochemistry 52, 1-7.

Hammond, J.R.M. (1993). Brewer’s yeasts. In: The Yeast. Yeast Technology, (A.H. Rose and J.S. Harrison, eds.). Academic Press, London, UK.

Henschke, P.A. and Jiranek, V. (1993). Yeastsmetabolism of nitrogen compounds. In: Wine Microbiology and Biotechnology, (G.H. Fleet, eds.), Pp. 77-164. Harwood Academic Publishers, Langhorne, Pensilvania, USA.

Hohmann, S. (1997). Yeast Stress Responses, (S. Hohmann and W.H. Mager, eds.), Pp. 101-145. Landes, R.G., Co., Austin, Texas, USA.

Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Review 66, 300-372.

Jarvis, B., Forster, M.J. and Kinsella, W.P. (1995). Factors affecting the development of cider flavour. Journal of Applied Bacteriology 79, 5S18S.

Johnson, M.J. (1976). Aerobic microbial growth at low oxygen concentrations. Journal of Bacteriology 94, 101-108.

Kappeli, O. (1986). Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Advances in Microbial Physiology 28, 181-209.

Killian, R.E. and Ough, C.S. (1979). Fermentation esters-formation and retention as affected by fermentation temperature. American Journal of Enology and Viticulture 30, 301-305.

Kunkee, R.E. (1984). Selection and modification of yeasts and lactic acid bacteria for wine fermentation. Food Microbiology 1, 315-332.

Lafon-Lafourcade, S. (1983). Wine and brandy. In: Biotechnology. Food and Feed Production with Microorganisms, (H.J. Rehm and G. Reed, eds.), Pp. 81-163. Verlag Chemie, Weinheim, Germany.

Larsson, C., Pahlman, I.L., Ansell, R., Rigoulet, M., Adler, L. and Gustafsson, L. (1998). The importance of the glycerol-3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14, 347-357.

Lilly, M., Lambrechts, M.G. and Pretorius, I.S. (2000). Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Applied and Environmental Microbiology 66, 744-753.

Luttik, M.A.H., Overkamp, K.M., Kotter, P., de Vries, S., van Dijken, J.P. and Pronk, J.T. (1998). The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. Journal of Biological Chemistry 273, 24529-24534.

Malcorps, P. and Dufour, J.P. (1987). Ester synthesis by Saccharomyces cerevisiae: localisation of acetyl-CoA: iso-amylalcohol acetyltransferase (“AT”). Procedings of European Brewing Convention 21, 377-384.

Mangas, J.J., Cabranes, C., Moreno, J. and Gomis, D.B. (1994). Influence of cider making technology on cider taste. Lebensmittel und Wissenschaft Technologie 27, 583-586.

Meilgaard, M., Civille, G.V. and Carr, B.T. (1999). Sensory Evaluation Techniques. CRC Press, Boca Raton, New York, USA.

Minetoki, T., Bogaki, T., Iwamatsu, A., Fujii, T. and Hamachi, M. (1993). The purification, properties and internal peptide sequences of alcohol acetyltransferase from Saccharomyces cerevisiae Kyokai no. 7. Bioscience, Biotechnology and Biochemistry 57, 2094-2098.

Mwesigye, P.K. and Barford, J.P. (1996). Mechanism of sucrose utilisation by Saccharomyces cerevisiae. Journal of General and Applied Microbiology 42, 297-306.

Nagy, M., Lacroute, F. and Thomas, D. (1992). Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. Procedings of the National Academy of Sciences of USA 89, 8966-8970.

Nikakhtari, H. and Hill, G. (2006). Closure effects on oxygen transfer and aerobic growth in shake flasks. Biotechnology and Bioengineering 95, 15-21.

Nieuwoudt, H.H., Prior, B.A., Pretorius, I.S. and Bauer, F.F. (2002). Glycerol in South African table wines: an assessment of its relationship to wine quality. South African Journal of Enology and Viticulture 23, 22-30.

Nordstrom, K. (1962). Formation of ethyl acetate in fermentation with brewer’s yeast. III. Participation of coenzyme A. Journal of the Institute of Brewing 68, 398-407.

Nordstrom, K. (1964). Formation of esters from acids by brewer’s yeast. IV. Effect of higher fatty acids and toxicity of lower fatty acids. Journal of the Institute of Brewing 70, 233-242.

Nordstrom, K. (1968). Yeast growth and glycerol formation. II. Carbon and redox balance. Journal of the Institute of Brewing 74, 429-432.

Nykanen, L. and Nykanen, I. (1977). Production of esters by different yeast strains in sugar fermentations. Journal of the Institute of Brewing 83, 30-31.

Ortega, C., Lopez, R., Cacho, J. and Ferreira, V. (2001). Fast analysis of important wine volatile compounds: Development and validation of a new method based on gas chromatography-flame ionization detection analysis of dichloromethane micro extracts. Journal of Chromatography A 923, 205-214.

Paalme, T., Elken, R., Vilu, R. and Korhola, M. (1997). Growth efficiency of Saccharomyces cerevisiae on glucose/ethanol media with a smooth change in the dilution rate (A-stat). Enzime and Microbial Technology 20, 174-181.

Peddie, H.A.B. (1990). Ester formation in brewery fermentations. Journal of the Institute of Brewing 96, 327-331.

Picinelli, A., Suarez, B., Moreno, J., Rodr´ıguez, R., Caso-Garc´ıa, L.M. and Mangas, J.J. (2000). Chemical characterization of Asturian cider. Journal of Agricultural and Food Chemistry 48, 3997-4002.

Petrik, M., Kappeli, O. and Fiechter, A. (1983). An expanded concept for glucose effect in the yeast Saccharomyces uvarum: involvement of shortand long-term regulation. Journal of General Microbiology 129, 43-9.

Posas, F., Takekawa, M. and Saito, H. (1998). Signal transduction by MAP kinase cascades in budding yeast. Current Opinion in Microbiology 1, 175-182.

Postma, E., Verduyn, C., Scheffers, W.A. and van Dijken, J.P. (1989). Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066. Applied and Environmental Microbiology 55, 468-477.

Pretorius, I.S. and Hoj, P.B. (2005). Grape and wine biotechnology: Challenges, opportunities and potential benefits. Australian Journal of Grape and Wine Research 11, 83-108.

Pronk, J.T., Wenzel, T.J., Luttik, M.A.H., Klaassen, C.C.M., Scheffers, W.A., Steensma, H.Y. and van Dijken, J.P. (1994). Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Microbiology 140, 601-610.

Quain, D.E. (1988). Studies on yeast physiology - impact of fermentation performance and product quality. Journal of the Institute of Brewing 94, 315-323.

Rainieri, S., Zambonelli, C., Tini, V., Castellari, L. and Giudici, P. (1998). The enological traits of thermotolerant Saccharomyces strains. American Journal of Enology and Viticulture 49, 319-324.

Rapp, A. and Mandery, H. (1986). New progress in wine and wine research. Experientia 42, 873- 884.

Redzepovic, S., Orlic, S., Majdak, A., Kozina, B., Volschenk, H. and Viljoen-Bloom, M. (2003). Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. International Journal of Food Microbiology 83, 49- 61.

Ribereau-Gayon, J., Peynaud, E., Ribereau-Gayon, P. and Sudraud P. (1975). Traite d’oenolgie: Sciences et techniques du vin. Dunod, Paris, France.

Ribereau-Gayon, P. (1978). Wine aroma. In: Flavour of Foods and Beverages, (G. Charalambous and G.E. Inglett, eds.), Pp. 362-371. Academic Press, NewYork, USA.

Ribereau-Gayon, P., Dubourdieu, D., Doneche, B. and Lonvaud, A. (2000). Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In: Handbook of Enology. The Microbiology of Wine and Vinifications, (J. Wiley and Sons, eds.), Pp. 51-74. New York, USA.

Ribereau-Gayon, P., Dubourdieu, D. and Doneche, B. (2006). Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In: Handbook of Enology. The Microbiology of Wine and Vinifications, (J. Wiley and Sons, eds.), Pp. 74-77. The Atrium, Southern Gate, Chichester, England.

Rojas, V., Gil, J.V., Manzanares, P., Gavara, R., Pinaga, F. and Flores, A. (2002). Measurement of alcohol acetyltransferase and ester hydrolase activities in yeast extracts. Enzyme and Microbial Technology 30, 224-230.

Rosenfeld, E. and Beauvoit, B. (2003). Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20, 1115-1144.

Rossi, C., Hauber, J. and Singer, T.P. (1964). Mitochondrial and cytoplasmic enzymes for the reduction of fumarate to succinate in yeast. Nature 204, 167-170.

Rous, C.V., Snow, R. and Kunkee, R.E. (1983). Reduction of higher alcohols by fermentation with a leucine-auxotrophic mutant of wine yeast. Journal of the Institute of Brewing 89, 274-278.

Salmon, J.M. (1987). L-Malic-acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochimica et Biophysica Acta 901, 30- 34.

Small, W.C. and McAlister-Henn, L. (1998). Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. Journal of Bacteriology 180, 4051-4055.

Snoek, I.S.I. and Steensma, H.Y. (2006). Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. FEMS Yeast Research 6, 393-403.

Sonnleitner, B. and Kappeli, O. (1986). Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. Biotechnology and Bioengineering 28, 927-937.

Souci, S.W., Fachmann, W. and Kraut, H. (2000). Juices from fruits and berries: Food composition and nutrition tables (6th edition), Pp. 13-52. Scientific publishers, Stuttgart, Germany.

Su, S.K. and Wiley, R.C. (1998). Changes in apple juice flavor compounds during processing. Journal of Food Science 63, 688-691.

Suarez Valles, B., Pando Bedrinana, R., Fernandez Tascon, N., Gonzales Garcia, A. and Rodriguez Madrera, R. (2005). Analytical differentiation of cider inoculated with yeast (Saccharomyces cerevisiae) isolated from Asturian (Spain) apple juice. LWT-Food Science and Technology 38, 455-461.

Suomalainen, H. (1981). Yeast esterase and aroma esters in alcoholic beverages. Journal of the Institute of Brewing 87, 296-300.

Swiegers, J.H. and Pretorius, I.S. (2005). Yeast modulation of wine flavour. Advances in Applied Microbiology 57, 131-175.

Swiegers, J.H., Bartowsky, E.J., Henschke, P.A. and Pretorius, I.S. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape Wine Research 11, 139-173.

Tolosa, L., Kostov, Y., Harms, P. and Rao, G. (2002). Noninvasive measurement of dissolved oxygen in shake flasks. Biotechnology and Bioengineering 80, 594-597.

Valero, E., Moyano, L., Millan, M.C., Medina, M. and Ortega, J.M. (2002). Higher alcohols and esters production by Saccharomyces cerevisiae. Influence of the initial oxygenation of the grape must. Food Chemistry 78, 57-61.

van Dijken, J.P. and Scheffers, W.A. (1986). Redox balances in the metabolism of sugars by yeasts. FEMS Microbiology Reviews 32, 199-224.

van Dijken van den Bosch, E., Hermans, J.J., de Miranda, L.R. and Scheffers, W.A. (1986). Alcoholic fermentation by ’non-fermenting’ yeasts. Yeast 2, 123-127.

van Dijken, J.P., Weusthuis, R.A. and Pronk, J.T. (1993). Kinetics of growth and sugar consumption by yeasts. Antonie van Leeuwenhoek 63, 343-352.

van Hoek, P., van Dijken, J.P. and Pronk, J.T. (1998). Effect of specific growth rate on fermentative capacity of Baker’s yeast. Applied and Environmental Microbiology 64, 4226- 4233.

van Urk, H., Voll, W.S.L., Scheffers, W.A. and Van Dijken, J.P. (1990). Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Applied and Environmental Microbiology 56, 281-287.

van Winden, W.A., van Dam, J.C., Ras, C., Kleijn, R.J., Vinke, J.L., van Gulik, W.M. and Heijnen, J.J. (2005). Metabolic-flux analysis of Saccharomyces cerevisiae CEN. PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Research 5, 559-568.

Verduyn, C., Zomerdijk, T.P.L., van Dijken, J.P. and Scheffers, W,A. (1984). Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Applied Microbiology and Biotechnology 19, 181-185.

Verduyn, C., Postma, E., Scheffers, W.A. and van Dijken, J.P. (1990). Physiology of Saccharomyces cerevisiae in anaerobic glucoselimited chemostat cultures. Journal of General Microbiology 136, 395- 403.

Verduyn, C. (1991). Physiology of yeasts in relation to biomass yields. Antonie van Leeuwenhoek 60, 325-353.

Verduyn, C., Stouthamer, A.H., Scheffers, W.A. and van Dijken, J.P. (1991). A theoretical evaluation of growth yields of yeasts. Antonie van Leeuwenhoek 59, 49-63.

Visser, W., Batenburg-van der Vegte, W.M., Scheffers, W.A. and van Dijken, J.P. (1990). Oxygen requirements of yeasts. Applied and Environmental Microbiology 56, 3785-3792.

Vollbrecht, D. and Radler, F. (1973). Formation of higher alcohols by amino acid deficient mutants of Saccharomyces cerevisiae. I. The decomposition of amino acids to higher alcohols. Archives of Mikrobiology 94, 351-358.

Wakai, Y., Shimazaki, T. and Hara, S. (1980). Formation of succinate during fermentation of sake mash and grape must. Hakkokogaku 58, 363-368.

Wang, L., Xu, Y., Zhao, G. and Li, J. (2004). Rapid analysis of flavor volatiles in apple wine using Headspace Solid-Phase microextraction. Journal of the Institute of Brewing 110, 57-65.

Wiebe1, M.G., Rintala, E., Tamminen, A., Simolin, H., Salusjarvi, L., Toivari, M., Kokkonen, J.T., Kiuru, J., Ketola, R.A., Jouhten, P., Huuskonen, A., Maaheimo, H., Ruohonen, L. and Penttila, M. (2008). Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Research 8, 140-154.

Yoshioka, K. and Hashimoto, N. (1981). Ester formation by alcohol acetyltransferase from brewer’s yeast. Agricultural and Biological Chemistry 45, 2183-2190.

Yoshioka, K. and Hashimoto, H. (1983). Cellular fatty acid and ester formation by brewers’ yeast. Agricultural and Biological Chemistry 47, 2287-2294.

Zoecklein, B.W., Fugelsang, K.C., Gump, B.H. and Nury, F.S. (1995). Alcohol and extract. In: Wine Analysis and Production, (The Chapman and Hall Enology Library, eds.), Pp. 97-114. New York, USA.
Published
2020-04-08
How to Cite
Estela-Escalante, W., Rychtera, M., Melzoch, K., & Hatta-Sakoda, B. (2020). EFFECT OF AERATION ON THE FERMENTATIVE ACTIVITY OF Saccharomyces cerevisiae CULTURED IN APPLE JUICE. Revista Mexicana De Ingeniería Química, 11(2), 211-226. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1543
Section
Biotechnology