ANALISIS DE CÉLULAS EN DISPOSITIVOS MICROFLUÍDICOS

  • R.E. Sósol-Fernández Centro de Investigación y de Estudios Avanzados del IPN Unidad Monterrey
  • V.M. Marín-Lizárraga Centro de Investigación y de Estudios Avanzados del IPN Unidad Monterrey
  • E. Rosales-Cruzaley Centro de Investigación y de Estudios Avanzados del IPN Unidad Monterrey
  • B.H. Lapizco-Encinas Centro de Investigación y de Estudios Avanzados del IPN Unidad Monterrey
Keywords: cells, microscale, microfluidics, microorganisms

Abstract

En los últimos años se ha tenido un importante crecimiento en el desarrollo de métodos en microescala para el análisis, separación y concentración de células intactas, es decir, sin la realización de lisis. La miniaturización ofrece excelentes ventajas para el manejo y análisis de células, como son rapidez, portabilidad, alta resolución y sensibilidad, bajo requerimiento de cantidad de muestra y reactivos. Diferentes áreas de la ciencia y de la industria, como la industria alimentaria, los análisis clínicos y biomédicos, el monitoreo ambiental, etc., están siendo beneficiadas por el uso de micro-laboratorios o micro-sistemas para análisis. Debido a estas importantes ventajas, significativos esfuerzos de investigación a nivel mundial están siendo dedicados al desarrollo de técnicas aplicables en microescala para el análisis de células. El presente es un artículo de revisión tutorial que expone los fundamentos y aplicaciones recientes de las técnicas en microescala más importantes para el análisis de células intactas. Se incluye una descripción breve del funcionamiento y ejemplos de aplicaciones de seis técnicas en microescala estratégicamente seleccionadas para proveer al lector un panorama integral sobre los avances en este campo. Las técnicas aquí presentadas cubren los principales mecanismos empleados en los métodos miniaturizados para el manejo de células intactas. Estos mecanismos son campos eléctricos (electroforesis, dielectroforesis, electrorotación e impedancia eléctrica), efectos de flujo (enfocado inercial) y efectos ópticos (citometría de flujo).

References

Ainsworth, C., Nixon, B. y Aitken, R.J. (2005). Development of a novel electrophoretic system for the isolation of human spermatozoa. Human Reproduction 20, 2261-2270.

Amin, N.C., Blanchin, M.D., Ake, M. y Fabre, H. (2012). Capillary zone electrophoresis as a potential technique for the simultaneous determination of sulfadoxine and pyrimethamine in tablet formulations. Journal of Pharmaceutical and Biomedical Analysis 58, 168-171.

Armstrong, D.W. y He, L.F. (2001). Determination of cell viability in single or mixed samples using capillary electrophoresis laser-induced fluorescence microfluidic systems. Analytical Chemistry 73, 4551-4557.

Armstrong, D.W. y Schneiderheinze, J.M. (2000). Rapid Identification of the Bacterial Pathogens Responsible for Urinary Tract Infections Using Direct Injection CE. Analytical Chemistry 72, 4474-4476.

Armstrong, D.W., Schneiderheinze, J.M., Kullman, J.P. y He, L.F. (2001). Rapid CE microbial assays for consumer products that contain active bacteria. FEMS Microbiology Letters 194, 33- 37.

Armstrong, D.W., Schulte, G., Schneiderheinze, J.M. y Westenberg, D.J. (1999). Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Analytical Chemistry 71, 5465-5469.

Bhagat, A.A.S., Kuntaegowdanahalli, S.S., Kaval, N., Seliskar, C.J. y Papautsky, I. (2010). Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomedical Microdevices 12, 187-195.

Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H. y Burke, D.T. (1998). An integrated nanoliter DNA analysis device. Science 282, 484-487.

Cetin, B. y Li, D. (2011). Dielectrophoresis in microfluidics technology. Electrophoresis 32, 2410-2427.

Cristofanilli, M., De Gasperis, G., Zhang, L., Hung, M.-C., Gascoyne, P.R.C. y Hortobagyi, G.N. (2002). Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines. Clinical Cancer Research 8, 615-619.

Cummings, E. y Khusid, B. (2007). Dielectrophoretic microfluidics. En Microfluidic Technologies for Miniaturized Analysis Systems. (S. Hardt and F. Schonfeld, eds.), Pp. 315-355, Springer, New York

Cummings, E.B. (2003). Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Engineering in Medicine and Biology Magazine 22, 75-84.

Dalton, C., Goater, A.D., Burt, J.P.H. y Smith, H.V. (2004). Analysis of parasites by electrorotation. Journal of Applied Microbiology 96, 24-32.

David, F., Steinwand, M., Hust, M., Bohle, K., Ross, A., Dubel, S. y Franco-Lara, E. (2011). Antibody production in Bacillus megaterium: Strategies and physiological implications of scaling from microtiter plates to industrial bioreactors. Biotechnology Journal 6, 1516- 1531.

Di Carlo, D., Irimia, D., Tompkins, R.G. y Toner, M. (2007). Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences of the United States of America 104, 18892-18897.

Ehlers, J., Tosch, M., AlBaz, I. y Lochmann, E.- R. (1991). Rapid estimation of chromosomal damage in yeast due to the effects of environmental chemicals using pulsed field gel electrophoresis. Ecotoxicology and Environmental Safety 22, 133-138.

Gagnon, Z.R. (2011). Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32, 2466-2487.

Gomez-Sjoberg, R., Morisette, D.T. y Bashir, R. (2005). Impedance microbiology-on-achip: Microfluidic bioprocessor for rapid detection of bacterial metabolism. Journal of Microelectromechanical Systems 14, 829-838.

Gonzalez, C.F. y Remcho, V.T. (2005). Harnessing dielectric forces for separation of cells, fine particles and macromolecules. Journal of Chromatography A 1079, 59-68.

Griffiths, D.J. (1999). Introduction to Electrodynamics. Upper Saddle River, Prentice Hall.

He, L.F., Jepsen, R.J., Evans, L.E. y Armstrong, D.W. (2003). Electrophoretic behavior and potency assessment of boar sperm using a capillary electrophoresis & laser induced fluorescence system. Analytical Chemistry 75, 825-834.

Hughes, M.P. (2002). Nanoelectromechanics in Engineering and Biology. Boca Raton, FL, CRC Press.

Hur, S.C., Choi, S.-E., Kwon, S. y Di Carlo, D. (2011a). Inertial focusing of non-spherical microparticles. Applied Physics Letters 99, 044101-3.

Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R.B. y Di Carlo, D. (2011b). Deformabilitybased cell classification and enrichment using inertial microfluidics. Lab on a Chip 11, 912- 920.

Ibeas, J.I. y Jimenez, J. (1993). Electrophoretic karyotype of budding yeasts with intact cellwall. Nucleic Acids Research 21, 3902-3902.

Ivanoff, C.S., Hottel, T.L., Tantbirojn, D.V., Versluis, A. y Garcia-Godoy, F. (2011). Dielectrophoretic transport of fluoride into enamel. American Journal of Dentistry 24, 341-345.

Jones, P., Staton, S. y Hayes, M. (2011). Blood cell capture in a sawtooth dielectrophoretic microchannel. Analytical and Bioanalytical Chemistry 401, 2103-2111.

Jones, T.B. (1995). Electromechanics of Particles. Cambridge University Press, E.U.A.

Klodzinska, E. y Buszewski, B. (2009). Electrokinetic detection and characterization of intact microorganisms. Analytical Chemistry 81, 8-15.

Kremser, L., Blaas, D. y Kenndler, E. (2004). Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells. Electrophoresis 25, 2282-2291

Kuntaegowdanahalli, S.S., Bhagat, A.A.S., Kumar, G. y Papautsky, I. (2009). Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip 9, 2973-2980.

Lantz, A.W., Bao, Y. y Armstrong, D.W. (2007). Single-cell detection: Test of microbial contamination using capillary electrophoresis. Analytical Chemistry 79, 1720-1724.

Lapizco-Encinas, B.H. (2008). Aplicaciones de microfluídica en bioseparaciones. Revista Mexicana de Ingeniería Química 7, 205-214.

Lapizco-Encinas, B.H. y Rito-Palomares, M. (2007). Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28, 4521- 4538

Lapizco-Encinas, B.H., Simmons, B.A., Cummings, E.B. y Fintschenko, Y. (2004). Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Analytical Chemistry 76, 1571-1579.

Lei, U., Sun, P.-H. y Pethig, R. (2011). Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments. Biomicrofluidics 5, 044109-16.

Leonard, K.M. y Minerick, A.R. (2011). Explorations of ABO-Rh antigen expressions on erythrocyte dielectrophoresis: Changes in cross-over frequency. Electrophoresis 32, 2512- 2522.

Li, H. y Bashir, R. (2002). Dielectrophoretic separation and manipulation of live and heattreated cells of Listeria on microfabricated devices with interdigitated electrodes. Sensors and Actuators B-Chemical 86, 215-221.

Mach, A.J. y Di Carlo, D. (2010). Continuous scalable blood filtration device using inertial microfluidics. Biotechnology and Bioengineering 107, 302-311.

Meade, S.O., Godin, J., Chen, C.-H., Cho, S.H., Tsai, F.S., Qiao, W. y Lo, Y.-H. (2011). Microfluidic flow cytometry: Advancements toward compact, integrated systems. En Advanced Optical Flow Cytometry, Pp. 273- 310, Wiley-VCH Verlag GmbH & Co. KGaA,

Meighan, M.M., Staton, S.J.R. y Hayes, M.A. (2009). Bioanalytical separations using electric field gradient techniques. Electrophoresis 30, 852-865.

Moncada-Hernández, H. y Lapizco-Encinas, B.H. (2010). Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Analytical and Bioanalytical Chemistry 396, 1805-1816.

Ozuna-Chacón, S., Lapizco-Encinas, B.H., Rito-Palomares, M., Collado-Arredondo, E. y Martínez Chapa, S.O. (2007). Dielectroforesis con estructuras aisladoras. Revista Mexicana de Ingeniería química 6, 329-335.

Palkova, Z., Vachova, L., Valer, M. y Preckel, T. (2004). Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system. Cytometry Part A 59A, 246-253.

Pohl, H.A. (1978). Dielectrophoresis. Cambridge, Cambridge University Press.

Pratt, E.D., Huang, C., Hawkins, B.G., Gleghorn, J.P. y Kirby, B.J. (2011). Rare cell capture in microfluidic devices. Chemical Engineering Science 66, 1508-1522.

Sabounchi, P., Morales, A.M., Ponce, P., Lee, L.P., Simmons, B.A. y Davalos, R. (2008). Sample concentration and impedance detection on a microfluidic polymer chip. Biomedical Microdevices 10, 661-670.

Salmanzadeh, A., Romero, L., Shafiee, H., GalloVillanueva, R.C., Stremler, M.A., Cramer, S.D. y Davalos, R.V. (2012). Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab on a Chip 12, 182-189.

Sano, M.B., Henslee, E.A., Schmelz, E. y Davalos, R.V. (2011). Contactless dielectrophoretic spectroscopy: Examination of the dielectric properties of cells found in blood. Electrophoresis 32, 3164-3171.

Shafiee, H., Caldwell, J., Sano, M. y Davalos, R. (2009). Contactless dielectrophoresis: a new technique for cell manipulation. Biomedical Microdevices 11, 997-1006.

Shen, Y., Elele, E. y Khusid, B. (2011). A novel concept of dielectrophoretic engine oil filter. Electrophoresis 32, 2559-2568.

Srivastava, S.K., Artemiou, A. y Minerick, A.R. (2011). Direct current insulatorbased dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis 32, 2530-2540.

Srivastava, S.K., Baylon-Cardiel, J.L., LapizcoEncinas, B.H. y Minerick, A.R. (2011). A continuous DC-insulator dielectrophoretic sorter of microparticles. Journal of Chromatography A 1218, 1780-1789.

Suehiro, J., Hamada, R., Noutomi, D., Shutou, M. y Hara, M. (2003). Selective detection of viable bacteria using dielectrophoretic impedance measurement method. Journal of Electrostatics 57, 157-168.

Szeliga, J., Jackowski, M., Klodzinska, E., Buszewski, B. y Kupczyk, W. (2011). Clinical application of a rapid microbiological test based on capillary zone electrophoresis to assess local skin infection. BMC Research Notes 4, 467.

van Noort, D., Ong, S.M., Zhang, C., Zhang, S., Arooz, T. y Yu, H. (2009). Stem cells in microfluidics. Biotechnology Progress 25, 52- 60.

Voldman, J. (2006). Electrical forces for microscale cell manipulation. Annual Review of Biomedical Engineering 8, 425-454.

Voldman, J. (2007). Dielectrophoretic Traps for Cell Manipulation. En BioMEMS and Biomedical Nanotechnology. (M. Ferrari, R. Bashir and S. Wereley, eds.), Pp. 159-186, Springer US,

Wallingford, R.A. y Ewing, A.G. (1987). Capillary zone electrophoresis with electrochemical detection. Analytical Chemistry 59, 1762-1766.

Want, A., Hancocks, H., Thomas, C.R., Stocks, S.M., Nebe-Von-Caron, G. y Hewitt, C.J. (2011). Multi-parameter flow cytometry and cell sorting reveal extensive physiological heterogeneity in Bacillus cereus batch cultures. Biotechnology Letters 33, 1395-1405.

Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature 442, 368-373.

Wu, J., Ben, Y., Battigelli, D. y Chang, H.-C. (2005). Long-Range AC electroosmotic trapping and detection of bioparticles. Industrial & Engineering Chemistry Research 44, 2815- 2822.

Wu, Y.F., Huang, C.J., Wang, L., Miao, X.L., Xing, W.L. y Cheng, J. (2005c). Electrokinetic system to determine differences of electrorotation and traveling-wave electrophoresis between autotrophic and heterotrophic algal cells. Colloids and Surfaces A-Physicochemical and Engineering Aspects 262, 57-64.

Xuan, X., Zhu, J. y Church, C. (2010). Particle focusing in microfluidic devices. Microfluidics and Nanofluidics 9, 1-16.

Yamaguchi, N., Ohba, H. y Nasu, M. (2006). Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device. Letters in Applied Microbiology 43, 631-636.
Published
2020-04-08
How to Cite
Sósol-Fernández, R., Marín-Lizárraga, V., Rosales-Cruzaley, E., & Lapizco-Encinas, B. (2020). ANALISIS DE CÉLULAS EN DISPOSITIVOS MICROFLUÍDICOS. Revista Mexicana De Ingeniería Química, 11(2), 227-248. Retrieved from http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1544
Section
Biotechnology